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ABSTRACT

mage analysis of cell biology and tissue engineering is time-consuming and requires personal expertise. However, evalu-

ation of the results may be subjective. Therefore, computer-based learning and detection applications have been rapidly
developed in recent years. In this study, Confocal Laser Scanning Microscope (CLSM) images of the viable pre-osteoblastic
mouse MC3T3-E1 cells in 3D bioprinted tissue scaffolds, captured from a bone tissue regeneration study, were analyzed
by using image processing techniques. The aim of this study is to develop a reliable and fast algorithm for the automated
analysis of live/dead assay CLSM images. Percentages of live and dead cell areas in the scaffolds were determined, and
then, total cell viabilities were calculated. Furthermore, manual measurements of four different analysts were obtained
to evaluate subjectivity in the analysis. The measurement variations of analysts, also known as the coefficient of variation,
were determined from 13.18% to 98.34% for live cell images and from 9.75% to 126.02% for dead cell images. Therefore, an
automated algorithm was developed to overcome this subjectivity. The other aim of this study is to determine the depth
profile of viable cells in 3D tissue scaffolds. Consequently, cross-sectional image sets of three different types of tissue scaf-
folds were analyzed.
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Ucre biyolojisi ve doku mihendisliginde gorinti analizi zaman alan ve kisisel uzmanlik gerektiren bir islemdir. Ancak so-
H nuglarin degerlendirilmesi 6znel olabilir. Bu nedenle bilgisayar destekli 6grenme ve tespit uygulamalari son yillarda hizla
gelismistir. Bu ¢calismada, bir kemik dokusu rejenerasyon galismasindan yakalanan, 3D biyo-baskili doku iskelelerinde canli
pre-osteoblastik fare MC3T3-E1 hiicrelerinin Konfokal Lazer Taramali Mikroskop (CLSM) gorintuleri, gérintl isleme teknik-
leri kullanilarak analiz edilmistir. Bu ¢calismanin amaci, canli/6li analizi CLSM gorintilerinin otomatik analizi igin giivenilir ve
hizl bir algoritma gelistirmektir. iskelelerdeki canli ve &li hiicre alanlarinin yiizdeleri belirlenmis ve ardindan toplam hiicre
canliliklari hesaplanmistir. Ayrica, analizde 6znelligi degerlendirmek icin dort farkli analistin manuel 6lgimleri yapilmistir.
Varyasyon katsayisi olarak da bilinen analistlerin 6lgiim varyasyonlari, canl hiicre gorintuleriigin % 13.18 ile % 98.34 ve 610
hicre goruntileriigin % 9.75 ile % 126.02 arasinda belirlenmistir. Bu nedenle, bu 6znelligi asmak igin otomatik bir algoritma
gelistirilmistir. Bu calismanin diger amaci, 3 boyutlu doku iskelelerindeki canli hiicrelerin derinlik profilini belirlemektir. So-
nug olarak, tg farkli doku iskelesinin kesitsel gorinti setleri analiz edilmistir.
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INTRODUCTION

iological images contain patterns, objects and/or li-
B ving cells that provide functional information about
the structure or system being viewed. Some of these
images may belong to artificial materials, while others
may belong to the culture images of cellular structures.
Various imaging techniques such as confocal laser scan-
ning microscopy (CLSM), scanning electron microscopy,
and optical microscopy can be used to obtain images of
materials or cells [1,2]. These images can be examined
using semi-automatic and/or fully-automatic software
[3-5]. Many researchers use image analysis programs
such as Imagel to perform manual analysis [6]. Various
information about abiotic environments, such as cells
and tissue, can be obtained from this software. For
example, some tissue scaffold properties such as fiber
diameter, pore diameter and permeability can be deter-
mined, and also cell and tissue properties such as the
amount of cell, percentage of cell viability, area cove-
red by cells can be analyzed [7-20]. There are several
approaches to analyze these properties and obtain the
analytical data. One of these approaches is user-depen-
dent utilities (Image J, etc). In user-dependent approach,
analyses take a very long time and also require personal
expertise [21]. Other approaches are semi-automated
and fully-automated analysis software which user does
not have direct influence. They shorten the analysis
time and reduce the dependency on the user. Thus,
subjective results derived from the user can be avoi-
ded. There are various studies in the literature about
automatic approaches [22]. Confocal microscopy ima-
ges were used to identify glial fibrillary acidic proteins
(GFAP) found in brain astrocytes in one of the studies
and an algorithm was developed to classify cells [23]. In
a similar study, the region of the cell nucleus was identi-
fied in an image obtained from mouse hippocampus by
staining cell nuclei and RNA in different colors [24]. Pic-
cinini et al. studied optical microscopy images obtained
by staining dead cells with trypan blue. These images
were analyzed and live and dead cells were classified
[25]. In another study, an algorithm was developed to
distinguish myelin sheath and nerve itself from the ner-
ve through the SEM images of a nerve bundle. The axons
in the inner part of the nerve bundle and the myelin
sheaths that surrounding these axons were determined
separately and a distribution graph of the diameters of
the nerve fibers in the nerve bundle was extracted [26].

In this study, CLSM images obtained from MC3T3-E1

pre-osteoblastic cells (osteoblast precursor) on alginate
and alginate-HAp (hydroxyapatite) tissue scaffolds were
used. At first, the percentages of the area of the live and
dead cells were calculated by four different analysts
using Imagel utility. Then, the developed algorithm was
performed semi-automatically for the same analysis
and the percentages of the area that belongs to the live
and dead cells were calculated. The innovative appro-
ach of the developed method is adaptive and calculates
the area percentages of the dead cells according to si-
milar studies in the literature. In the presented method,
firstly raw images were separated by the pre-processing
step. Afterwards, an image correlation algorithm for li-
ving cells, and an adaptive statistical approach for dead
cells were developed. Then, the results of the algorithm
and visual scoring were compared. Moreover, the coef-
ficient variance was calculated to determine the measu-
rement deviation between manual analyses. After the
algorithm was successfully developed, cross-sectional
CLSM images of live MC3T3-E1 cells in three different
tissue scaffolds (alginate-HAp, conventional Gel-MA
and microwave-assisted Gel-MA) were analyzed. Using
these image sets, it was determined how the viability
of the cells changed depending on the depth of the tis-
sue scaffold in further studies. All cross-sectional ima-
ges were examined, and a percentage of the viability
related to depth was calculated. This characterization
process is another innovative aspect of this study. The
maximum and minimum cell viability was determined
as a function of depth.

MATERIALS and METHODS

Production of Tissue Scaffolds

Alginate and Alginate-Hydroxyapatite (HAp) scaf-
folds

Alginate and alginate-HAp tissue scaffolds were produ-
ced by cross-linking reaction. Sodium alginate was dis-
solved in PBS (pH: 7.4) at a concentration of 3% (w/v).
CaS04 (1%,w/v) was added into the sodium alginate so-
lution to initiate internal gelation. Then, internal cross-
linking was carried out by mixing the two solutions via a
three-way valve. The mixing ratios of CaSO, and sodium
alginate solutions were optimized in terms of printabi-
lity and gelation. For encapsulation of cells, MC3T3-E1
pre-osteoblasts were dispersed in hydrogels at a den-
sity of 3x107 cells/mL. The resulting viscous solution
was imprinted in 24-well Petri dishes via Fab@Home
bioprinter. As a result of the extruder-based imprinting



process, cell-entrapped constructs in cylindrical geo-
metry (6 mm x 1 mm) were obtained. These constructs
were cross-linked with CaCl, and transferred to the cell
culture stage in the presence of nutrient medium in a
CO, incubator. The same process was repeated with
the addition of the nano-HAp, which was produced by
the biomimetic approach [27], into the sodium alginate
solution, thus alginate-HAp tissue scaffolds including
MC3T3-E1 cells were obtained.

Methacrylated gelatin (Gel-MA) scaffolds

Gelatin was methacrylated by two ways: Conventional
method [28] and microwave-assisted methacrylation
[29]. The reaction products, conventional Gel-MA and
microwave-assisted Gel-MA, were dried in a freeze-
dryer (Christ, Germany) and stored at -80°C until hydro-
gel preparation steps. Methacrylated gelatin (Gel-MA)
hydrogels were prepared by photo-crosslinking in the
present of photo-initiator (Irgacure, 0.3 w/v). Irgacure
was completely dissolved in PBS (pH: 7.4) at 509C. Gel-
MA was dissolved in this solution at 37 °C. MC3T3-E1
mouse pre-osteoblast cells were gently dispersed and
mixed into sterile hydrogel solutions at a density of 2 x
107 cells/mL A cell-bio-ink mixture was loaded into the
deposition syringes of Fab@Home bioprinter and prin-
ted along the X-Y—Z target paths. After printing, cell-
laden hydrogel disks (6 mm x 1 mm) were immediately
crosslinked with UV (320-480 nm) light at an intensity of
200 mW/cm? for 40 s.

Imaging of Cell Viability

Alginate and alginate-HAp hydrogel scaffolds

In this study, the images that were used for viability
analysis were captured by using a confocal laser scan-
ning microscope (Zeiss, LSM510) with a live / dead
analysis molecular probe (Life Technology). Images
were captured in sequential scanning mode using 0.5,
20x/0.5 and 1 AU values in numerical aperture number,
objective magnification (Zeiss Plan-Neofluar objecti-

Figure 1. Block diagram of the image analysis algorithm.
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ve) and pinhole size parameters, respectively. On days
3 and 9 of the culture, cell-containing hydrogels were
washed with PBS (pH: 7.4) and incubated with 2 uM cal-
cein AM and 4 uM ethidium homodimer (EthD-1) before
imaging. In this protocol, live cells were stained green
with fluorescein marker calcein acetoxymethyl (calcein
AM), while dead cells were stained red with EthD-1 [27].
The true color (RGB) images obtained by the aforemen-
tioned technique were recorded in a ‘tif’ image format
with a size of 1024x1024 (Real size equivalent in materi-
al: 460 um x 490 um) pixels.

Conventional and microwave-assisted Gel-MA hydro-
gel scaffolds

The cell viability of these group of hydrogels were exami-
ned using a live/dead viability kit. The cell-laden hydro-
gels were washed in PBS and incubated in 2 uM Calcein
AM and 4 uM ethidium homodimer (Ethd-1) solution for
30 min. The cell-loaded Gel-MA hydrogels were obser-
ved under a confocal microscope (Zeiss, LSM 510) with
the same parameters that detailed above. Two image
sets of 3D bioprinted tissue scaffolds were taken from
on day 3.

Image Processing Techniques for Analysis of Live or
Dead Cell Percentages

CLSM images were analyzed using MATLAB 2015b.
Images used in the study were obtained from pre-
osteoblastic MC3T3-E1 cell cultures. In the cell culture
study, 35 different images obtained from 3D bioprinted
tissue scaffolds were analyzed. Then, 25 cross-sectional
images of three different tissue scaffolds at every 9 um
were taken from each tissue scaffold for cell viability
characterization. This process was carried out to inves-
tigate the depth-dependent variation of the cell growth
rate in experimental cell culture studies. During charac-
terization, the same algorithm was used to determine
viability as the function of depth. The block diagram for
the developed algorithm was given in Figure 1.
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Preprocessing
The following algorithm steps were applied to the cell
images in the preprocessing part.

Splitting RGB image into layers: RGB image consists
of three layers which are red, green, and blue channels.

Based on the current staining technique, a green layer
for the live cell and a red layer for the dead cell were
obtained from the RGB image [27]. In splitting process,
overlapped regions were excluded owing to the uncer-
tainty about viability condition.

Removing noises from the image: The noise on the

images which was caused by the imaging technique was
removed using Wiener adaptive filter. This filter is an
effective tool for removing signal-independent zero-
mean white Gaussian noise [30]. Noisy image can be
modeled as in Eq.1.

X ;=Y tn 1)

X, is the noisy image, y,,//.is the noise-free image and n,
is the additive Gaussian noise. The aim of the noise re-
moval process is to suppress the noise stemming from
noisy image (Xw) by minimizing the mean squared error
(MSE). A linear estimate )71;/. of v, is derived from Eq.2
where N is the number of elements in y, At this point,
Wiener filter minimizes the mean square error betwe-
en the estimated image QU and the original image y,,in
Eq.2 [31].

MSE () =—
@)

X, s the density value of a pixel in the NxN image. Pi-
xel-wise adaptive Wiener filter use neighborhoods of
size (2n+1)x(2m+1) window to estimate the local image
mean and standard deviation. In this study, window
size was chosen as 5x5 [32]. It assumes that the noise
is stationary with zero mean and variance o, and un-
correlated with the original image X, Based on these
assumptions, Wiener adaptive filter estimates the local
mean and variance around each pixel using Eq.3 and
Eq.4 [32—-34]. If the variance is large, the Wiener filter
performs little smoothing. If the variance is small, the
Wiener filter performs more smoothing.

n+i m+j
"= DI
i.j el
(2n+l 2m+1 k,n,Jm 3)
n+i m+j
c, = (X, —m;
" (2n+1 )(2m+1 anJZm b
(4)
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X =m+ . (xl.,j—mu)
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m, is the local mean in Eq.3 and o,is the local variance
in Eq.4. Then Wiener filter creates a pixel-wise filtering
using these estimates and estimated image is obtained
according to Eq.5.

v, is the local noise variance in Eq.5, was obtained using
the mean value of all local estimated variances [32—34].

Smoothing the image with Gaussian filter: After the
noise removal step, Gaussian type low-pass filter was
applied to fill tiny gaps in cells and to remove high fre-

guency noise. Most edge-detection algorithms are sen-
5]. This filtering was used because of
the edge-detection in the next part. Gaussian matrix

sitive to noise (3

(hg) was generated with 5x5 kernel size due to o=1 stan-
dard deviation in Eq.6 [36]. Gaussian matrix formed in
before was convolved with image according to Eq.7 and
new softened image (h) was obtained.

2 2
~(m2+m?)

h, (m,m,)=e 20°

hg (nl’n2)

D3N

h(nl,n2



Image correlation, statistical image analysis and
thresholding process

In order to obtain live cells contour on the preproces-
sed image cross-correlation, statistical image analysis
and then thresholding steps were performed. Two di-
mensional cross-correlation function was calculated
with Eqg.8. X is the MxN sized preprocessed image and H
is the PxQ sized template which was selected as a mask
in Eq.8. Template was selected in based on pixel size to
cover the whole cell. For this reason, P and Q values
may change according to the size of the template. At
the end of this process, the correlation matrix was ob-
tained in (N+Q-1) x (M+P-1) dimensions [37].

M-1N-1

C(k,l)=ZZX(m,n)I-_I(m—k,n—l)

m=0n=0

—(P-1)<k<M-1,

—(Q-1)<I<N-], @)

Afterwards, normalization process was performed to
the correlated image by using Eg. 9. Where, X' is the
normalized cross-correlation matrix, W is the mean of
the cross-correlation matrix and o is the standard devi-
ation of the cross-correlation matrix.

_X-p
(o)

XI
(9)

In the normalization process, the average pixel value
of the image was subtracted from each pixel value and
the calculated difference was divided by the standard
deviation. With this process live cells were identified by
positive values. Also, non-viable regions were identified
by negative values. Owing to this situation, the thres-
hold value has been set to zero.
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Then, edge detection functions were used to extract
contours from the thresholded image. For edge detec-
tion process, three different algorithms (Sobel, Prewitt
and Canny) were applied [37]. For the edge detection
process, Sobel kernels in Figure 2a, Prewitt kernels in
Figure 2b and Canny kernels in Figure 2c were used for
convolution.

In order to minimize the methodological error, three
methods were separately used. Then three edge detec-
ted images were combined with each other by adding
one image. The final edge detected image was superim-
posed on the raw image.

Adaptive thresholding for dead cells: The thresholding
method for living cells has been insufficient for the de-
tection of dead cells. Therefore, a different approach
has been developed. In this approach, threshold values
for detecting dead cells were obtained adaptively from
the images. These threshold values were determined
using the statistical analysis of the pixel density histog-
rams of dead cell images. Accordingly, two threshold
levels were designated for adaptive thresholding based
on dead cell images. is the value obtained by dividing
the average values of the image matrix by the standard
deviation of the matrix values (Eq.10) and is the avera-
ge value of the image matrix (Eq.11).

thresholdl = ‘ mean(matrix) ‘
‘ standartdeviation(matrix) ‘ 10)
threshold?2 = ‘mean(matrix)‘ »

Figure 2. Edge detection kernels used for convolution, a) Sobel kernels, b) Prewitt kernels, c) Canny kernels.
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After these threshold values were calculated, the me-
dian values of intensity levels in each line of the image
were selected for each row and they were obtained as
an one-dimensional vector. The highest value of this
vector was selected as a selector for the adaptive thres-
holding. This value was used for threshold selection.
The operation used in the algorithm was explained as a
conditional expression in Eg.12.

If maximumvaluemedian> threshold?2 susethreshold],

If maximumvaluemedian < threshold?2 susethreshold?,;

(12)

Once the threshold value has been selected, dead-cell
areas were detected by applying an image thresholding

process. After cell lines were identified, dead cell conto-
urs were determined with the edge detection method
that was explained in advance. Then cell contour image
was placed on the gray level image of dead cells.

Detection of cell area and calculation

Calculation of live and dead cell percentages
According to the thresholding process, pixel densities
higher than the threshold were set to ‘1’ and the others
were set to ‘0”. On the thresholded images of live and
dead cells, cell areas were calculated by counting the
values of “1’s on image with pixel? unit. Percentages of
cell areas were calculated by dividing the whole pixel on
image into cell areas. After the counting process, the
area percentages of the cells were reported.

Figure 3. An example of a raw image (3D bioprinted tissue scaffold of alginate-HAp on day 3, Surface image).



Inspection of analysts and reporting of live and dead
cell percentages

Images of live and dead cells were analyzed with Image)
program by four analysts. Each analyst reported his/her
measurements and according to these measurements,
some of the statistical parameters have been calculated.
In this evaluation, average values of calculations, stan-
dard deviations and variation coefficient percentages
of the numerical values were calculated by the analysts.
The variation coefficients, calculated by the mean value
ratio of the standard deviation, express how much the
distributions in the manual measurements change with
respect to the average. The percentage of variation co-
efficient is the measure of how different analyst are de-
viating from the average measured value for the same
measurement. In other words, it can be described as
subjectivity in measurement. Thence, the metrics of the
analysts were reported in Experimental Results part.

RESULTS and DISCUSSION

A raw image sample was given in Figure 3. According
to the assay protocol, the live cells stained green with
calcein AM and the locations of the dead cells stained
red with EthD-1 were shown in the Figure 3. Non-cell
image artifacts, which produce fluorescence effect by
interacting with HAp in the tissue scaffold, were also
indicated in this raw image (Figure 3).
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In the preprocessing step, firstly the raw image was di-
vided into red, green and blue layers so that dead and
living cells can be analyzed separately. In addition, the
overlapping parts of the living and dead cells in the red
and green layers were also removed to prevent mista-
kes that may be caused by the dyeing technique or the
imaging technique. Then, the Wiener adaptive noise fil-
ter was applied to the images. As the last step of prep-
rocessing, Gaussian type low pass filter was applied to
soften the images. The images obtained as a result of
the preprocessing steps were given in Figure 4.

After the preprocessing step of the algorithm, the gre-
en and red image layers were converted to gray level.
Correlation, normalization, and thresholding steps were
performed for live cells as described in Image correla-
tion, statistical analysis and thresholding section. For
dead cells, as described in Image correlation, statistical
analysis and thresholding section, an adaptive thres-
hold value derived from images containing dead cells
and varying with each image was used. Eventually, the
contours of the live and dead cells in the images were
determined and the superimposed-on images obtained
as a result of preprocessing, and they were converted
to gray level (Figure 5).

Figure 4. Images obtained as a result of preprocessing steps, a) Live cells, b) Dead cells.
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Figure 5. Images obtained as a result of thresholding and edge detection process, a-c) Live cells, b-d) Dead cells.

Thirty-five CLSM images of alginate and alginate-HAp
tissue scaffolds were analyzed using the developed
algorithm and live and dead cell percentages were cal-
culated. In addition, the same image set was analyzed
manually by four different analysts with Image) men-
tioned in Detection of cell area and calculation section.
The results acquired from the algorithm were evaluated
on the basis of analysts’ results and statistical analysis.
The measurements and calculations for image the set
were given in Table 1.

As a result of this calculation process; intervals of vari-
ation coefficient percentages were obtained and ave-
rage values of variation coefficient percentages were
calculated (Table 2).

The other goal of this study is to determine the cell via-
bility depending on the depth of the tissue scaffold. For
this purpose, the change in the viability percentages
of MC3T3-E1 cells in tissue scaffolds was investigated
based on the depth of the tissue scaffold. For this cha-
racterization, the MC3T3-E1 cells implanted into the
produced three different tissue scaffolds (alginate-HAp,
traditional gel-MA, and microwaved gel-MA) were visu-
alized with CLSM. Cross-section images were taken at
every 9 um and an image set was created for each tissue
scaffold with 25 individual cross-sectional image. Each
cross-sectional image in this set was examined separa-
tely and the viability percentages of the cross-sectional
areas were calculated. The percentage of the live cell
area depending on the depth of the tissue scaffolds was
shown in Figure 6.



Table 1. Calculations for the image set (The variables given in the table are Al: Analyst 1, A2: Analyst 2, A3: Analyst 3, A4: Analyst 4,
MA = Mean of Analysts, ASD = Standard Deviation of Analysts, AL: Algoritma Result, VC = Percentage of Variation Coefficient, CC:Cell
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Condition, LCl=Live Cell Image, DCI=Dead Cell Image, Calculation of all measurements are given in percentages).

Image
No.

10

11

12

13

14

15

16

17

18

19

20

cc

LCI
DCI
LCI
DCl
LCI
DCl
LCI
DCI
LCI
DCI
LCI
DCl
LCI
DCI
LCI
DCI
LCI
DCI
LCI
DCI
LCI
DCI
LCI
DCI
LCI
DCl
LCI
DCl
LCI
DCI
LCI
DCl
LCI
DCI
LClI
DCI
LCI
DCI
LCI
DCl

Al%

3.228
0.205
3.335
0.277
3.922
0.254
5.037
0.343
4.438
0.202
5.649
0.538
2.234
0.105
6.028
0.357
3.804
0.021
5.028
0.5
2.402
0.167
1.238
0.083
1.543
0.233
2.453
0.501
1.155
0.099
1.165
0.373
3.814
0.145
4.202
0.109
3.685
0.217
4.128
0.105

A2%

4.277
0.246
3.613
0.756
6.554
0.331
3.648
0.227
7.670
0.658
6.351
0.658
3.837
0.114
7.669
0.249
3.858
0.060
6.489
0.328
3.273
0.163
1.566
0.166
2.740
0.193
3.526
0.878
1.212
0.217
2.697
0.147
3.090
0.401
4.817
0.063
3.729
0.225
3.031
0.225

A3%

4.034
0.318
3.387
0.491
6.76
0.572
4.189
0.673
6.146
0.522
8.107
1.457
4.592
0.251
10.801
1.213
8.435
0.659
10.361
0.827
2.811
0.277
2.033
0.158
2.871
0.348
3.064
0.381
0.848
0.206
3.173
0.391
4.776
0.386
6.591
0.232
4.874
0.839
5.111
0.383

Ad%

5.863
0.420
5.332
0.041
13.971
0.439
5.668
0.230
4.531
0.124
11.235
0.311
12.415
1.175
8.848
0.066
12.584
0.878
7.683
0.061
11.208
0.838
3.561
0.143
2.030
0.108
3.358
0.188
1.546
0.300
3.540
0.513
5.230
0.235
6.726
0.323
3.324
0.921
6.279
0.264

MA%

4.351
0.297
3.917
0.391
7.802
0.399
4.635
0.368
5.696
0.376
7.835
0.741
5.770
0.411
8.337
0.471
7.170
0.404
7.390
0.429
4.924
0.361
2.100
0.138
2.296
0.221
3.100
0.487
1.190
0.206
2.644
0.356
4.228
0.292
5.584
0.182
3.903
0.551
4.637
0.244

SD

0.956
0.081
0.824
0.264
3.733
0.120
0.775
0.182
1.327
0.221
2.157
0.432
3.930
0.445
1.740
0.441
3.647
0.372
1.956
0.278
3.641
0.279
0.890
0.033
0.540
0.086
0.409
0.252
0.248
0.071
0.905
0.132
0.832
0.107
1.097
0.102
0.582
0.331
1.200
0.099

VC%

21.97
27.40
21.03
67.47
47.85
29.96
16.72
49.47
23.29
58.64
27.53
58.25
68.12
108.13
20.87
93.51
50.87
92.06
26.47
64.78
73.96
77.23
42.39
23.65
23.51
39.10
13.18
51.68
20.81
34.76
34.21
37.12
19.69
36.59
19.65
56.29
14.92
60.09
25.88
40.63

AL%

4.740
0.394
4.156
0.301
6.336
0.219
4.936
0.142
5.883
0.122
7.201
0.620
6.896
0.432
6.767
0.306
8.238
0.137
7.770
0.288
6.051
0.581
3.340
0.059
3.347
0.166
4.362
0.215
1.614
0.094
2.354
0.429
5.024
0.259
5.957
0.044
4.533
0.832
4.962
0.134
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Table 1. Continue.

Image

No. cc Al% A2% A3% Ad% MA% SD VC% AL%
LCI 1.948 4.002 3.126 5.632 3.677 1.344 36.54 3.915
2 DCI 0.115 0.100 0.334 0.236 0.196 0.095 48.62 0.322
LCI 3.028 4.981 2.981 5.863 4.213 1.249 29.63 4.740
2 DCI 0.251 0.202 0.423 0.516 0.348 0.127 36.51 0.394
LCI 1.162 1.212 2.903 2.236 1.878 0.731 38.90 2.532
2 DCl 0.122 0.571 0.302 0.782 0.444 0.252 56.75 0.179
LCI 10.666 10.997 12.548 16.502 12.678 2.319 18.29 10.279
& DCl 0.2 0.252 0.2 0.221 0.218 0.021 9.75 0.091
LCI 2.048 4.351 5.755 12.731 6.221 3.985 64.047 7.711
# DCI 0.203 0.145 0.203 0.476 0.257 0.129 50.166 0.000
LCI 6.657 5.187 12.197 7.388 7.857 2.628 33.446 6.282
2 DCI 1.545 1.142 2.279 2.252 1.804 0.483 26.743 0.058
LCI 4.236 4.021 7.349 10.574 6.545 2.673 40.843 7.320
o DCI 0.964 0.140 3.933 0.000 1.259 1.587 126.029 0.657
LCI 3.598 2.651 4.960 9.390 5.150 2.582 50.140 6.453
28 DCI 0.833 0.894 2.993 1.557 1.569 0.870 55.417 0.504
LCI 4.980 2.412 7.827 7.308 5.632 2.146 38.105 5.546
2 DCI 0.539 0.104 4.008 0.695 1.337 1.557 116.525 2.230
LCI 1.576 1.529 6.760 6.340 4.051 2.503 61.789 6.530
%0 DCI 0.555 0.471 1.495 0.245 0.691 0.478 69.066 2.234
LCI 1.220 0.570 7.190 5.046 3.507 2.729 77.826 6.527
. DCl 0.109 0.375 0.435 0.183 0.276 0.134 48.558 0.018
LCI 2.137 3.310 11.083 2.444 4.744 3.685 77.688 4.727
> DCI 0.103 0.145 0.843 0.587 0.420 0.309 73.751 0.000
LCI 0.816 0.626 3.326 9.023 3.448 3.390 98.342 5751
> DCI 0.333 0.086 0.527 0.156 0.275 0.171 62.055 0.911
LCI 0.581 0.478 4.302 3.563 2.231 1.722 77177 3.484
4 DCl 0.034 0.031 0.109 0.229 0.101 0.080 79.672 0.511
LCI 1.922 2.021 7.878 2.500 3.580 2.491 69.573 2.471
. DCl 0.153 0.196 1.500 0.372 0.555 0.552 99.345 0.651

Table 2. Statistical analysis of analysts” measurements results.

. Intervals of Variation Coefficient Average Values of Variation Coefficient
Glycerol Concentrations (%)
Percentages (%) Percentages (%)
Live Cell Images 13.18-98.34 40.72

Dead Cell Images 9.75-126.02 59.02
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Figure 6. Cell viability change depending on the depth of tissue scaffolds.

Maximum cell viabilities were obtained down from the
tissue scaffold at intervals of 63 um and 90 pm. Maxi-
mum cell viability of Alginate-HAp was obtained at 72
um and viability of the cells rapidly decreased until 198
um. After this depth, there was no viability observed.
For Traditional Gel-MA and Microwaved Gel-MA, the
maximum cell viabilities were obtained at 90 um and
63 um, respectively. After these points, viability of cell
rapidly decreased but never reached zero for either tis-
sue scaffolds. Three images of maximum cell viability
for tissue scaffolds were shown in Figure 7.

DISCUSSION

In this work, study was designed to semi-automatically
detect cell viability based on the depth of the 3D biop-
rinted tissue scaffold. Firstly, an algorithm has been de-
veloped which enables accurate detection of live and
dead cells. The algorithm can easily distinguish separate

cells. However, it may be insufficient to distinguish adja-
cent intertwined cells in some cases. To overcome this
problem, detected cell areas were used instead of cell
number in calculations. In this way, a relative cell viabi-
lity evaluation can be made. In the continuation of the
study, the cell viability in the 3D bioprinted tissue scaf-
fold was determined depending on the depth. Contrary
to the studies frequently encountered in the literature,
in which the scaffold material structure was examined
in the 3D plane, the efficiency of cell activity was exami-
nedinthe 3D plane in the presented study [22,28,39]. In
this study, the examination of cell activity, which chan-
ges due to different material properties, along the 3d
section plane, constitutes its distinguishing aspect from
other material-cell interaction studies in the literature
[22,29,40]. However, unlike the manual evaluations per-
formed with user-based software in the literature for
cell detection, in the presented study, multiple evaluati-
ons could be made in a short time with a semi-automa-
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Figure 7. Depth images of tissue scaffolds with the highest percentage of cell viability, a) Alginate-HAp (72 um) b) Conventional Gel-

MA (90 um) c) Microwave-assisted Gel-MA (63 um).

tic software design that is least dependent on the user
(analyst) [41]. At this point, user reliability, which is anot-
her perspective of the study, is also discussed in order
to make user (analyst) and software comparisons. The
reliability of the analysis in such studies depends on the
segmentation accuracy of live and dead cells. Analysts
who are experts in their fields inspect these cell images
with a visual examination. Visual inspection may cause
subjective results and affect the outcome of the study
[6,38]. Furthermore, these results are not reproducible
because of the personal expertise of the analysts. One
of the goals of this study is to evaluate the results of a
person-to-person variation (analyst effect) in the visual
analysis. The results of our study showed that analysts
may make different interpretations in the examination.
These subjective interpretations can cause faulty eva-
luations that may lead researchers to mislead in their
studies. The obtained results were compared with the
percentage of the variation coefficient, which repre-
sents the measurement difference between four dif-
ferent analysts. The coefficients of the variation were
obtained from 13.18 % to 98.34 % for live cells and from
9.75% to 126.02% for dead cells with respect to measu-
rements of the analysists. In addition, the average valu-
es of variation coefficient percentages are 40.72% for
live cell images and 59.02% for dead cell images. The-
se results indicate the inter-analysts’ variabilities. It is
thought that the reason for this difference is that the
perception of human eyes differs from each other du-
ring visual evaluation. Another reason for the high rate
of deviation in dead cell images is that the number of
cells in the dead cell images is small compared to that
of live cell images, and this increases the rate of mis-
detection. Also, it is determined that the mean values
of the analysts’ measurements were close to algorithm

results when Table 1 was examined. In cases where the
coefficient of the variation in manual measures is low,
the algorithm results are converging the average of the
manual results.

CONCLUSIONS

In the study, area percentages of live and dead cells in
CLSM images of cell cultures that were implanted to
alginate and alginate-HAp tissue scaffolds were calcu-
lated semi-automatically. The results show that there
were too many deviations between the manual evalu-
ations of the analysts. Conversely, it has been shown
that reproducible results can be obtained with the de-
veloped algorithm. Moreover, depth-dependent cell
viability analyses were performed on the tissue scaf-
fold. The maximum cell viability was obtained at 63
um, 72 um and 90 um for microwave-assisted Gel-MA,
alginate-HAp, conventional Gel-MA scaffolds, respec-
tively. For Alginate-HAp scaffold cell viability began to
decrease and there was no viability deeper than 198
um. For conventional Gel-MA and Microwave-assisted
Gel-MA tissue scaffolds, cell viability began to decrease
but never reached zero percentage. Depending on the
depth of the tissue scaffold, a reduction in viability is ex-
pected. This situation can be explained by the reduced
transport of the nutrition substances needed by the
cells based on diffusion physics.
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