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Ö Z

Hücre biyolojisi ve doku mühendisliğinde görüntü analizi zaman alan ve kişisel uzmanlık gerektiren bir işlemdir. Ancak so-
nuçların değerlendirilmesi öznel olabilir. Bu nedenle bilgisayar destekli öğrenme ve tespit uygulamaları son yıllarda hızla 

gelişmiştir. Bu çalışmada, bir kemik dokusu rejenerasyon çalışmasından yakalanan, 3D biyo-baskılı doku iskelelerinde canlı 
pre-osteoblastik fare MC3T3-E1 hücrelerinin Konfokal Lazer Taramalı Mikroskop (CLSM) görüntüleri, görüntü işleme teknik-
leri kullanılarak analiz edilmiştir. Bu çalışmanın amacı, canlı/ölü analizi CLSM görüntülerinin otomatik analizi için güvenilir ve 
hızlı bir algoritma geliştirmektir. İskelelerdeki canlı ve ölü hücre alanlarının yüzdeleri belirlenmiş ve ardından toplam hücre 
canlılıkları hesaplanmıştır. Ayrıca, analizde öznelliği değerlendirmek için dört farklı analistin manuel ölçümleri yapılmıştır. 
Varyasyon katsayısı olarak da bilinen analistlerin ölçüm varyasyonları, canlı hücre görüntüleri için % 13.18 ile % 98.34 ve ölü 
hücre görüntüleri için % 9.75 ile % 126.02 arasında belirlenmiştir. Bu nedenle, bu öznelliği aşmak için otomatik bir algoritma 
geliştirilmiştir. Bu çalışmanın diğer amacı, 3 boyutlu doku iskelelerindeki canlı hücrelerin derinlik profilini belirlemektir. So-
nuç olarak, üç farklı doku iskelesinin kesitsel görüntü setleri analiz edilmiştir.
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A B S T R A C T

Image analysis of cell biology and tissue engineering is time-consuming and requires personal expertise. However, evalu-
ation of the results may be subjective. Therefore, computer-based learning and detection applications have been rapidly 

developed in recent years. In this study, Confocal Laser Scanning Microscope (CLSM) images of the viable pre-osteoblastic 
mouse MC3T3-E1 cells in 3D bioprinted tissue scaffolds, captured from a bone tissue regeneration study, were analyzed 
by using image processing techniques. The aim of this study is to develop a reliable and fast algorithm for the automated 
analysis of live/dead assay CLSM images. Percentages of live and dead cell areas in the scaffolds were determined, and 
then, total cell viabilities were calculated. Furthermore, manual measurements of four different analysts were obtained 
to evaluate subjectivity in the analysis. The measurement variations of analysts, also known as the coefficient of variation, 
were determined from 13.18% to 98.34% for live cell images and from 9.75% to 126.02% for dead cell images. Therefore, an 
automated algorithm was developed to overcome this subjectivity. The other aim of this study is to determine the depth 
profile of viable cells in 3D tissue scaffolds. Consequently, cross-sectional image sets of three different types of tissue scaf-
folds were analyzed.
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INTRODUCTION

Biological images contain patterns, objects and/or li-
ving cells that provide functional information about 

the structure or system being viewed. Some of these 
images may belong to artificial materials, while others 
may belong to the culture images of cellular structures. 
Various imaging techniques such as confocal laser scan-
ning microscopy (CLSM), scanning electron microscopy, 
and optical microscopy can be used to obtain images of 
materials or cells [1,2]. These images can be examined 
using semi-automatic and/or fully-automatic software 
[3–5]. Many researchers use image analysis programs 
such as ImageJ to perform manual analysis [6]. Various 
information about abiotic environments, such as cells 
and tissue, can be obtained from this software. For 
example, some tissue scaffold properties such as fiber 
diameter, pore diameter and permeability can be deter-
mined, and also cell and tissue properties such as the 
amount of cell, percentage of cell viability, area cove-
red by cells can be analyzed [7-20]. There are several 
approaches to analyze these properties and obtain the 
analytical data. One of these approaches is user-depen-
dent utilities (Image J, etc). In user-dependent approach, 
analyses take a very long time and also require personal 
expertise [21]. Other approaches are semi-automated 
and fully-automated analysis software which user does 
not have direct influence. They shorten the analysis 
time and reduce the dependency on the user. Thus, 
subjective results derived from the user can be avoi-
ded. There are various studies in the literature about 
automatic approaches [22]. Confocal microscopy ima-
ges were used to identify glial fibrillary acidic proteins 
(GFAP) found in brain astrocytes in one of the studies 
and an algorithm was developed to classify cells [23]. In 
a similar study, the region of the cell nucleus was identi-
fied in an image obtained from mouse hippocampus by 
staining cell nuclei and RNA in different colors [24]. Pic-
cinini et al. studied optical microscopy images obtained 
by staining dead cells with trypan blue. These images 
were analyzed and live and dead cells were classified 
[25]. In another study, an algorithm was developed to 
distinguish myelin sheath and nerve itself from the ner-
ve through the SEM images of a nerve bundle. The axons 
in the inner part of the nerve bundle and the myelin 
sheaths that surrounding these axons were determined 
separately and a distribution graph of the diameters of 
the nerve fibers in the nerve bundle was extracted [26].

In this study, CLSM images obtained from MC3T3-E1 

pre-osteoblastic cells (osteoblast precursor) on alginate 
and alginate-HAp (hydroxyapatite) tissue scaffolds were 
used. At first, the percentages of the area of the live and 
dead cells were calculated by four different analysts 
using ImageJ utility. Then, the developed algorithm was 
performed semi-automatically for the same analysis 
and the percentages of the area that belongs to the live 
and dead cells were calculated. The innovative appro-
ach of the developed method is adaptive and calculates 
the area percentages of the dead cells according to si-
milar studies in the literature. In the presented method, 
firstly raw images were separated by the pre-processing 
step. Afterwards, an image correlation algorithm for li-
ving cells, and an adaptive statistical approach for dead 
cells were developed. Then, the results of the algorithm 
and visual scoring were compared. Moreover, the coef-
ficient variance was calculated to determine the measu-
rement deviation between manual analyses. After the 
algorithm was successfully developed, cross-sectional 
CLSM images of live MC3T3-E1 cells in three different 
tissue scaffolds (alginate-HAp, conventional Gel-MA 
and microwave-assisted Gel-MA) were analyzed. Using 
these image sets, it was determined how the viability 
of the cells changed depending on the depth of the tis-
sue scaffold in further studies. All cross-sectional ima-
ges were examined, and a percentage of the viability 
related to depth was calculated. This characterization 
process is another innovative aspect of this study. The 
maximum and minimum cell viability was determined 
as a function of depth.

MATERIALS and METHODS

Production of Tissue Scaffolds
Alginate and Alginate-Hydroxyapatite (HAp) scaf-
folds
Alginate and alginate-HAp tissue scaffolds were produ-
ced by cross-linking reaction. Sodium alginate was dis-
solved in PBS (pH: 7.4) at a concentration of 3% (w/v). 
CaSO4 (1%,w/v) was added into the sodium alginate so-
lution to initiate internal gelation. Then, internal cross-
linking was carried out by mixing the two solutions via a 
three-way valve. The mixing ratios of CaSO4 and sodium 
alginate solutions were optimized in terms of printabi-
lity and gelation. For encapsulation of cells, MC3T3-E1 
pre-osteoblasts were dispersed in hydrogels at a den-
sity of 3x107 cells/mL. The resulting viscous solution 
was imprinted in 24-well Petri dishes via Fab@Home 
bioprinter. As a result of the extruder-based imprinting 
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process, cell-entrapped constructs in cylindrical geo-
metry (6 mm x 1 mm) were obtained. These constructs 
were cross-linked with CaCl2 and transferred to the cell 
culture stage in the presence of nutrient medium in a 
CO2 incubator. The same process was repeated with 
the addition of the nano-HAp, which was produced by 
the biomimetic approach [27], into the sodium alginate 
solution, thus alginate-HAp tissue scaffolds including 
MC3T3-E1 cells were obtained.

Methacrylated gelatin (Gel-MA) scaffolds 
Gelatin was methacrylated by two ways: Conventional 
method [28] and microwave-assisted methacrylation 
[29]. The reaction products, conventional Gel-MA and 
microwave-assisted Gel-MA, were dried in a freeze-
dryer (Christ, Germany) and stored at -80oC until hydro-
gel preparation steps. Methacrylated gelatin (Gel-MA) 
hydrogels were prepared by photo-crosslinking in the 
present of photo-initiator (Irgacure, 0.3 w/v). Irgacure 
was completely dissolved in PBS (pH: 7.4) at 50ºC. Gel-
MA was dissolved in this solution at 37 oC. MC3T3-E1 
mouse pre-osteoblast cells were gently dispersed and 
mixed into sterile hydrogel solutions at a density of 2 × 
107 cells/mL A cell-bio-ink mixture was loaded into the 
deposition syringes of Fab@Home bioprinter and prin-
ted along the X–Y–Z target paths. After printing, cell-
laden hydrogel disks (6 mm × 1 mm) were immediately 
crosslinked with UV (320-480 nm) light at an intensity of 
200 mW/cm2 for 40 s.

Imaging of Cell Viability
Alginate and alginate-HAp hydrogel scaffolds
In this study, the images that were used for viability 
analysis were captured by using a confocal laser scan-
ning microscope (Zeiss, LSM510) with a live / dead 
analysis molecular probe (Life Technology). Images 
were captured in sequential scanning mode using 0.5, 
20x/0.5 and 1 AU values in numerical aperture number, 
objective magnification (Zeiss Plan-Neofluar objecti-

ve) and pinhole size parameters, respectively. On days 
3 and 9 of the culture, cell-containing hydrogels were 
washed with PBS (pH: 7.4) and incubated with 2 μM cal-
cein AM and 4 μM ethidium homodimer (EthD-1) before 
imaging. In this protocol, live cells were stained green 
with fluorescein marker calcein acetoxymethyl (calcein 
AM), while dead cells were stained red with EthD-1 [27]. 
The true color (RGB) images obtained by the aforemen-
tioned technique were recorded in a ‘tif’ image format 
with a size of 1024x1024 (Real size equivalent in materi-
al: 460 µm x 490 µm) pixels.

Conventional and microwave-assisted Gel-MA hydro-
gel scaffolds
The cell viability of these group of hydrogels were exami-
ned using a live/dead viability kit. The cell-laden hydro-
gels were washed in PBS and incubated in 2 µM Calcein 
AM and 4 µM ethidium homodimer (Ethd-1) solution for 
30 min. The cell-loaded Gel-MA hydrogels were obser-
ved under a confocal microscope (Zeiss, LSM 510) with 
the same parameters that detailed above. Two image 
sets of 3D bioprinted tissue scaffolds were taken from 
on day 3.

Image Processing Techniques for Analysis of Live or 
Dead Cell Percentages
CLSM images were analyzed using MATLAB 2015b. 
Images used in the study were obtained from pre-
osteoblastic MC3T3-E1 cell cultures. In the cell culture 
study, 35 different images obtained from 3D bioprinted 
tissue scaffolds were analyzed. Then, 25 cross-sectional 
images of three different tissue scaffolds at every 9 μm 
were taken from each tissue scaffold for cell viability 
characterization. This process was carried out to inves-
tigate the depth-dependent variation of the cell growth 
rate in experimental cell culture studies. During charac-
terization, the same algorithm was used to determine 
viability as the function of depth. The block diagram for 
the developed algorithm was given in Figure 1.

Figure 1. Block diagram of the image analysis algorithm.
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Preprocessing
The following algorithm steps were applied to the cell 
images in the preprocessing part.

Splitting RGB image into layers: RGB image consists 
of three layers which are red, green, and blue channels. 
Based on the current staining technique, a green layer 
for the live cell and a red layer for the dead cell were 
obtained from the RGB image [27]. In splitting process, 
overlapped regions were excluded owing to the uncer-
tainty about viability condition. 

Removing noises from the image: The noise on the 
images which was caused by the imaging technique was 
removed using Wiener adaptive filter. This filter is an 
effective tool for removing signal-independent zero-
mean white Gaussian noise [30]. Noisy image can be 
modeled as in Eq.1.

x y ni j i j i j, , ,� �
				   (1)

xi,j is the noisy image, yi,j is the noise-free image and ni,j 

is the additive Gaussian noise. The aim of the noise re-
moval process is to suppress the noise stemming from 
noisy image (xi,j) by minimizing the mean squared error 
(MSE). A linear estimate ŷi,j of yi,j is derived from Eq.2 
where N is the number of elements in yi,j At this point, 
Wiener filter minimizes the mean square error betwe-
en the estimated image ŷi,j and the original image yi,j in 
Eq.2 [31].
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xk,l is the density value of a pixel in the NxN image. Pi-
xel-wise adaptive Wiener filter use neighborhoods of 
size (2n+1)x(2m+1) window to estimate the local image 
mean and standard deviation. In this study, window 
size was chosen as 5x5 [32]. It assumes that the noise 
is stationary with zero mean and variance σi,j and un-
correlated with the original image xk,l. Based on these 
assumptions, Wiener adaptive filter estimates the local 
mean and variance around each pixel using Eq.3 and 
Eq.4 [32–34]. If the variance is large, the Wiener filter 
performs little smoothing. If the variance is small, the 
Wiener filter performs more smoothing.
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mi,j is the local mean in Eq.3 and σi,j is the local variance 
in Eq.4. Then Wiener filter creates a pixel-wise filtering 
using these estimates and estimated image is obtained 
according to Eq.5.
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vi,j is the local noise variance in Eq.5, was obtained using 
the mean value of all local estimated variances [32–34].

Smoothing the image with Gaussian filter: After the 
noise removal step, Gaussian type low-pass filter was 
applied to fill tiny gaps in cells and to remove high fre-
quency noise. Most edge-detection algorithms are sen-
sitive to noise [35]. This filtering was used because of 
the edge-detection in the next part. Gaussian matrix 
(hg) was generated with 5x5 kernel size due to σ=1 stan-
dard deviation in Eq.6 [36]. Gaussian matrix formed in 
before was convolved with image according to Eq.7 and 
new softened image (h) was obtained.
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Image correlation, statistical image analysis and 
thresholding process 
In order to obtain live cells contour on the preproces-
sed image cross-correlation, statistical image analysis 
and then thresholding steps were performed. Two di-
mensional cross-correlation function was calculated 
with Eq.8. X is the MxN sized preprocessed image and H 
is the PxQ sized template which was selected as a mask 
in Eq.8. Template was selected in based on pixel size to 
cover the whole cell. For this reason, P and Q values 
may change according to the size of the template. At 
the end of this process, the correlation matrix was ob-
tained in (N+Q-1) x (M+P-1) dimensions [37]. 

C k l X m n H m k n l
m

M

n

N

, ,
0

1

0

1

� �� � � � �P k M1 1,

� �� � � � �Q l N1 1,
			   (8)

Afterwards, normalization process was performed to 
the correlated image by using Eq. 9. Where, X’ is the 
normalized cross-correlation matrix, µ is the mean of 
the cross-correlation matrix and σ is the standard devi-
ation of the cross-correlation matrix.

� �
�X X ��
� 				    (9)

In the normalization process, the average pixel value 
of the image was subtracted from each pixel value and 
the calculated difference was divided by the standard 
deviation. With this process live cells were identified by 
positive values. Also, non-viable regions were identified 
by negative values. Owing to this situation, the thres-
hold value has been set to zero.

Then, edge detection functions were used to extract 
contours from the thresholded image. For edge detec-
tion process, three different algorithms (Sobel, Prewitt 
and Canny) were applied [37]. For the edge detection 
process, Sobel kernels in Figure 2a, Prewitt kernels in 
Figure 2b and Canny kernels in Figure 2c were used for 
convolution. 

In order to minimize the methodological error, three 
methods were separately used. Then three edge detec-
ted images were combined with each other by adding 
one image. The final edge detected image was superim-
posed on the raw image.

Adaptive thresholding for dead cells: The thresholding 
method for living cells has been insufficient for the de-
tection of dead cells. Therefore, a different approach 
has been developed. In this approach, threshold values 
for detecting dead cells were obtained adaptively from 
the images. These threshold values were determined 
using the statistical analysis of the pixel density histog-
rams of dead cell images. Accordingly, two threshold 
levels were designated for adaptive thresholding based 
on dead cell images.  is the value obtained by dividing 
the average values of the image matrix by the standard 
deviation of the matrix values (Eq.10) and  is the avera-
ge value of the image matrix (Eq.11).

threshold
mean matrix

standartdeviation matrix
1� � �

� � 		  (10)

threshold mean matrix2 � � � 			   (11)

Figure 2. Edge detection kernels used for convolution, a) Sobel kernels, b) Prewitt kernels,   c) Canny kernels.
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After these threshold values were calculated, the me-
dian values of intensity levels in each line of the image 
were selected for each row and they were obtained as 
an one-dimensional vector. The highest value of this 
vector was selected as a selector for the adaptive thres-
holding. This value was used for threshold selection. 
The operation used in the algorithm was explained as a 
conditional expression in Eq.12.

If max�mumvaluemed�an threshold� 2	 usethreshold1

If max�mumvaluemed�an threshold� 2	 usethreshold2

(12)

Once the threshold value has been selected, dead-cell 
areas were detected by applying an image thresholding 

process. After cell lines were identified, dead cell conto-
urs were determined with the edge detection method 
that was explained in advance. Then cell contour image 
was placed on the gray level image of dead cells.

Detection of cell area and calculation
Calculation of live and dead cell percentages 
According to the thresholding process, pixel densities 
higher than the threshold were set to ‘1’ and the others 
were set to ‘0’. On the thresholded images of live and 
dead cells, cell areas were calculated by counting the 
values of ‘1’s on image with pixel2 unit. Percentages of 
cell areas were calculated by dividing the whole pixel on 
image into cell areas. After the counting process, the 
area percentages of the cells were reported.

Figure 3. An example of a raw image (3D bioprinted tissue scaffold of alginate-HAp on day 3, Surface image).
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Inspection of analysts and reporting of live and dead 
cell percentages 
Images of live and dead cells were analyzed with ImageJ 
program by four analysts. Each analyst reported his/her 
measurements and according to these measurements, 
some of the statistical parameters have been calculated. 
In this evaluation, average values of calculations, stan-
dard deviations and variation coefficient percentages 
of the numerical values were calculated by the analysts. 
The variation coefficients, calculated by the mean value 
ratio of the standard deviation, express how much the 
distributions in the manual measurements change with 
respect to the average. The percentage of variation co-
efficient is the measure of how different analyst are de-
viating from the average measured value for the same 
measurement. In other words, it can be described as 
subjectivity in measurement. Thence, the metrics of the 
analysts were reported in Experimental Results part.

RESULTS and DISCUSSION

A raw image sample was given in Figure 3. According 
to the assay protocol, the live cells stained green with 
calcein AM and the locations of the dead cells stained 
red with EthD-1 were shown in the Figure 3. Non-cell 
image artifacts, which produce fluorescence effect by 
interacting with HAp in the tissue scaffold, were also 
indicated in this raw image (Figure 3).

In the preprocessing step, firstly the raw image was di-
vided into red, green and blue layers so that dead and 
living cells can be analyzed separately. In addition, the 
overlapping parts of the living and dead cells in the red 
and green layers were also removed to prevent mista-
kes that may be caused by the dyeing technique or the 
imaging technique. Then, the Wiener adaptive noise fil-
ter was applied to the images. As the last step of prep-
rocessing, Gaussian type low pass filter was applied to 
soften the images. The images obtained as a result of 
the preprocessing steps were given in Figure 4.

After the preprocessing step of the algorithm, the gre-
en and red image layers were converted to gray level. 
Correlation, normalization, and thresholding steps were 
performed for live cells as described in Image correla-
tion, statistical analysis and thresholding section. For 
dead cells, as described in Image correlation, statistical 
analysis and thresholding section, an adaptive thres-
hold value derived from images containing dead cells 
and varying with each image was used. Eventually, the 
contours of the live and dead cells in the images were 
determined and the superimposed-on images obtained 
as a result of preprocessing, and they were converted 
to gray level (Figure 5).

Figure 4. Images obtained as a result of preprocessing steps, a) Live cells, b) Dead cells.
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Thirty-five CLSM images of alginate and alginate-HAp 
tissue scaffolds were analyzed using the developed 
algorithm and live and dead cell percentages were cal-
culated. In addition, the same image set was analyzed 
manually by four different analysts with ImageJ men-
tioned in Detection of cell area and calculation section. 
The results acquired from the algorithm were evaluated 
on the basis of analysts’ results and statistical analysis. 
The measurements and calculations for image the set 
were given in Table 1. 

As a result of this calculation process; intervals of vari-
ation coefficient percentages were obtained and ave-
rage values of variation coefficient percentages were 
calculated (Table 2).

The other goal of this study is to determine the cell via-
bility depending on the depth of the tissue scaffold. For 
this purpose, the change in the viability percentages 
of MC3T3-E1 cells in tissue scaffolds was investigated 
based on the depth of the tissue scaffold. For this cha-
racterization, the MC3T3-E1 cells implanted into the 
produced three different tissue scaffolds (alginate-HAp, 
traditional gel-MA, and microwaved gel-MA) were visu-
alized with CLSM. Cross-section images were taken at 
every 9 μm and an image set was created for each tissue 
scaffold with 25 individual cross-sectional image. Each 
cross-sectional image in this set was examined separa-
tely and the viability percentages of the cross-sectional 
areas were calculated. The percentage of the live cell 
area depending on the depth of the tissue scaffolds was 
shown in Figure 6. 

Figure 5. Images obtained as a result of thresholding and edge detection process, a-c) Live cells, b-d) Dead cells.
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Image
No.

CC A1% A2% A3% A4% MA% SD VC% AL%

1
LCI 3.228 4.277 4.034 5.863 4.351 0.956 21.97 4.740

DCI 0.205 0.246 0.318 0.420 0.297 0.081 27.40 0.394

2
LCI 3.335 3.613 3.387 5.332 3.917 0.824 21.03 4.156

DCI 0.277 0.756 0.491 0.041 0.391 0.264 67.47 0.301

3
LCI 3.922 6.554 6.76 13.971 7.802 3.733 47.85 6.336

DCI 0.254 0.331 0.572 0.439 0.399 0.120 29.96 0.219

4
LCI 5.037 3.648 4.189 5.668 4.635 0.775 16.72 4.936

DCI 0.343 0.227 0.673 0.230 0.368 0.182 49.47 0.142

5
LCI 4.438 7.670 6.146 4.531 5.696 1.327 23.29 5.883

DCI 0.202 0.658 0.522 0.124 0.376 0.221 58.64 0.122

6
LCI 5.649 6.351 8.107 11.235 7.835 2.157 27.53 7.201

DCI 0.538 0.658 1.457 0.311 0.741 0.432 58.25 0.620

7
LCI 2.234 3.837 4.592 12.415 5.770 3.930 68.12 6.896

DCI 0.105 0.114 0.251 1.175 0.411 0.445 108.13 0.432

8
LCI 6.028 7.669 10.801 8.848 8.337 1.740 20.87 6.767

DCI 0.357 0.249 1.213 0.066 0.471 0.441 93.51 0.306

9
LCI 3.804 3.858 8.435 12.584 7.170 3.647 50.87 8.238

DCI 0.021 0.060 0.659 0.878 0.404 0.372 92.06 0.137

10
LCI 5.028 6.489 10.361 7.683 7.390 1.956 26.47 7.770

DCI 0.5 0.328 0.827 0.061 0.429 0.278 64.78 0.288

11
LCI 2.402 3.273 2.811 11.208 4.924 3.641 73.96 6.051

DCI 0.167 0.163 0.277 0.838 0.361 0.279 77.23 0.581

12
LCI 1.238 1.566 2.033 3.561 2.100 0.890 42.39 3.340

DCI 0.083 0.166 0.158 0.143 0.138 0.033 23.65 0.059

13
LCI 1.543 2.740 2.871 2.030 2.296 0.540 23.51 3.347

DCI 0.233 0.193 0.348 0.108 0.221 0.086 39.10 0.166

14
LCI 2.453 3.526 3.064 3.358 3.100 0.409 13.18 4.362

DCI 0.501 0.878 0.381 0.188 0.487 0.252 51.68 0.215

15
LCI 1.155 1.212 0.848 1.546 1.190 0.248 20.81 1.614

DCI 0.099 0.217 0.206 0.300 0.206 0.071 34.76 0.094

16
LCI 1.165 2.697 3.173 3.540 2.644 0.905 34.21 2.354

DCI 0.373 0.147 0.391 0.513 0.356 0.132 37.12 0.429

17
LCI 3.814 3.090 4.776 5.230 4.228 0.832 19.69 5.024

DCI 0.145 0.401 0.386 0.235 0.292 0.107 36.59 0.259

18
LCI 4.202 4.817 6.591 6.726 5.584 1.097 19.65 5.957

DCI 0.109 0.063 0.232 0.323 0.182 0.102 56.29 0.044

19
LCI 3.685 3.729 4.874 3.324 3.903 0.582 14.92 4.533

DCI 0.217 0.225 0.839 0.921 0.551 0.331 60.09 0.832

20
LCI 4.128 3.031 5.111 6.279 4.637 1.200 25.88 4.962

DCI 0.105 0.225 0.383 0.264 0.244 0.099 40.63 0.134

Table 1. Calculations for the image set (The variables given in the table are A1: Analyst 1, A2: Analyst 2, A3: Analyst 3, A4: Analyst 4, 
MA = Mean of Analysts, ASD = Standard Deviation of Analysts, AL: Algoritma Result, VC = Percentage of Variation Coefficient, CC:Cell 
Condition, LCI=Live Cell Image, DCI=Dead Cell Image, Calculation of all measurements are given in percentages). 
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Image
No.

CC A1% A2% A3% A4% MA% SD VC% AL%

21
LCI 1.948 4.002 3.126 5.632 3.677 1.344 36.54 3.915

DCI 0.115 0.100 0.334 0.236 0.196 0.095 48.62 0.322

22
LCI 3.028 4.981 2.981 5.863 4.213 1.249 29.63 4.740

DCI 0.251 0.202 0.423 0.516 0.348 0.127 36.51 0.394

23
LCI 1.162 1.212 2.903 2.236 1.878 0.731 38.90 2.532

DCI 0.122 0.571 0.302 0.782 0.444 0.252 56.75 0.179

24
LCI 10.666 10.997 12.548 16.502 12.678 2.319 18.29 10.279

DCI 0.2 0.252 0.2 0.221 0.218 0.021 9.75 0.091

25
LCI 2.048 4.351 5.755 12.731 6.221 3.985 64.047 7.711

DCI 0.203 0.145 0.203 0.476 0.257 0.129 50.166 0.000

26
LCI 6.657 5.187 12.197 7.388 7.857 2.628 33.446 6.282

DCI 1.545 1.142 2.279 2.252 1.804 0.483 26.743 0.058

27
LCI 4.236 4.021 7.349 10.574 6.545 2.673 40.843 7.320

DCI 0.964 0.140 3.933 0.000 1.259 1.587 126.029 0.657

28
LCI 3.598 2.651 4.960 9.390 5.150 2.582 50.140 6.453

DCI 0.833 0.894 2.993 1.557 1.569 0.870 55.417 0.504

29
LCI 4.980 2.412 7.827 7.308 5.632 2.146 38.105 5.546

DCI 0.539 0.104 4.008 0.695 1.337 1.557 116.525 2.230

30
LCI 1.576 1.529 6.760 6.340 4.051 2.503 61.789 6.530

DCI 0.555 0.471 1.495 0.245 0.691 0.478 69.066 2.234

31
LCI 1.220 0.570 7.190 5.046 3.507 2.729 77.826 6.527

DCI 0.109 0.375 0.435 0.183 0.276 0.134 48.558 0.018

32
LCI 2.137 3.310 11.083 2.444 4.744 3.685 77.688 4.727

DCI 0.103 0.145 0.843 0.587 0.420 0.309 73.751 0.000

33
LCI 0.816 0.626 3.326 9.023 3.448 3.390 98.342 5.751

DCI 0.333 0.086 0.527 0.156 0.275 0.171 62.055 0.911

34
LCI 0.581 0.478 4.302 3.563 2.231 1.722 77.177 3.484

DCI 0.034 0.031 0.109 0.229 0.101 0.080 79.672 0.511

35
LCI 1.922 2.021 7.878 2.500 3.580 2.491 69.573 2.471

DCI 0.153 0.196 1.500 0.372 0.555 0.552 99.345 0.651

Table 1. Continue.

Glycerol Concentrations (%)
Intervals of Variation Coefficient 

Percentages (%)
Average Values of Variation Coefficient 

Percentages (%)

Live Cell Images 13.18 - 98.34 40.72

Dead Cell Images    9.75 – 126.02 59.02

Table 2. Statistical analysis of analysts’ measurements results.
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Maximum cell viabilities were obtained down from the 
tissue scaffold at intervals of 63 µm and 90 µm. Maxi-
mum cell viability of Alginate-HAp was obtained at 72 
µm and viability of the cells rapidly decreased until 198 
µm. After this depth, there was no viability observed. 
For Traditional Gel-MA and Microwaved Gel-MA, the 
maximum cell viabilities were obtained at 90 µm and 
63 µm, respectively. After these points, viability of cell 
rapidly decreased but never reached zero for either tis-
sue scaffolds. Three images of maximum cell viability 
for tissue scaffolds were shown in Figure 7.

DISCUSSION

In this work, study was designed to semi-automatically 
detect cell viability based on the depth of the 3D biop-
rinted tissue scaffold. Firstly, an algorithm has been de-
veloped which enables accurate detection of live and 
dead cells. The algorithm can easily distinguish separate 

cells. However, it may be insufficient to distinguish adja-
cent intertwined cells in some cases. To overcome this 
problem, detected cell areas were used instead of cell 
number in calculations. In this way, a relative cell viabi-
lity evaluation can be made. In the continuation of the 
study, the cell viability in the 3D bioprinted tissue scaf-
fold was determined depending on the depth. Contrary 
to the studies frequently encountered in the literature, 
in which the scaffold material structure was examined 
in the 3D plane, the efficiency of cell activity was exami-
ned in the 3D plane in the presented study [22,28,39]. In 
this study, the examination of cell activity, which chan-
ges due to different material properties, along the 3d 
section plane, constitutes its distinguishing aspect from 
other material-cell interaction studies in the literature 
[22,29,40]. However, unlike the manual evaluations per-
formed with user-based software in the literature for 
cell detection, in the presented study, multiple evaluati-
ons could be made in a short time with a semi-automa-

Figure 6. Cell viability change depending on the depth of tissue scaffolds.
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tic software design that is least dependent on the user 
(analyst) [41]. At this point, user reliability, which is anot-
her perspective of the study, is also discussed in order 
to make user (analyst) and software comparisons. The 
reliability of the analysis in such studies depends on the 
segmentation accuracy of live and dead cells. Analysts 
who are experts in their fields inspect these cell images 
with a visual examination. Visual inspection may cause 
subjective results and affect the outcome of the study 
[6,38]. Furthermore, these results are not reproducible 
because of the personal expertise of the analysts. One 
of the goals of this study is to evaluate the results of a 
person-to-person variation (analyst effect) in the visual 
analysis. The results of our study showed that analysts 
may make different interpretations in the examination. 
These subjective interpretations can cause faulty eva-
luations that may lead researchers to mislead in their 
studies. The obtained results were compared with the 
percentage of the variation coefficient, which repre-
sents the measurement difference between four dif-
ferent analysts. The coefficients of the variation were 
obtained from 13.18 % to 98.34 % for live cells and from 
9.75% to 126.02% for dead cells with respect to measu-
rements of the analysists. In addition, the average valu-
es of variation coefficient percentages are 40.72% for 
live cell images and 59.02% for dead cell images.  The-
se results indicate the inter-analysts’ variabilities. It is 
thought that the reason for this difference is that the 
perception of human eyes differs from each other du-
ring visual evaluation. Another reason for the high rate 
of deviation in dead cell images is that the number of 
cells in the dead cell images is small compared to that 
of live cell images, and this increases the rate of mis-
detection. Also, it is determined that the mean values 
of the analysts’ measurements were close to algorithm 

results when Table 1 was examined. In cases where the 
coefficient of the variation in manual measures is low, 
the algorithm results are converging the average of the 
manual results.

CONCLUSIONS

In the study, area percentages of live and dead cells in 
CLSM images of cell cultures that were implanted to 
alginate and alginate-HAp tissue scaffolds were calcu-
lated semi-automatically. The results show that there 
were too many deviations between the manual evalu-
ations of the analysts.  Conversely, it has been shown 
that reproducible results can be obtained with the de-
veloped algorithm. Moreover, depth-dependent cell 
viability analyses were performed on the tissue scaf-
fold. The maximum cell viability was obtained at 63 
µm, 72 µm and 90 µm for microwave-assisted Gel-MA, 
alginate-HAp, conventional Gel-MA scaffolds, respec-
tively. For Alginate-HAp scaffold cell viability began to 
decrease and there was no viability deeper than 198 
μm. For conventional Gel-MA and Microwave-assisted 
Gel-MA tissue scaffolds, cell viability began to decrease 
but never reached zero percentage. Depending on the 
depth of the tissue scaffold, a reduction in viability is ex-
pected. This situation can be explained by the reduced 
transport of the nutrition substances needed by the 
cells based on diffusion physics.

Figure 7. Depth images of tissue scaffolds with the highest percentage of cell viability, a) Alginate-HAp (72 µm) b) Conventional Gel-
MA (90 µm) c) Microwave-assisted Gel-MA (63 µm).
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