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ÖZ

Yakıt olarak metanolün toksisite ve düşük elektrokatalitik yükseltgenme hızı gibi bazı dezavantajları olduğu 
için yakıt pili uygulamalarında alternatif yakıtlar ilgi çekmektedir. Diğer taraftan, taşıma ve kullanım 

kolaylığının yanı sıra yüksek teorik açık devre potansiyeli gibi özellikleriyle dikkat çeken formik asit metanole 
alternatif olarak ortaya çıkmaktadır. Poli(vinilferrosen) destekli platin (Pt/PVF) doğrudan formik asit yakıt 
hücrelerinde kullanım için gelecek vadeden bir katalizördür. Bu çalışmada Pt/PVF katalizör sistemiyle 
formik asitin elektroyükseltgenmesi ile metanol ve formik asitin karşılaştırılması yer almaktadır. Taramalı 
elektron mikroskobu görüntülerine göre, Pt tanecikleri polimer destek üzerinde düzgün dağılmıştır. Pt/PVF 
katalizörü formik asit yükseltgenmesi için yüksek katalitik aktivite göstermiştir. Aynı koşullarda metanolün 
elektroyükseltgenmesiyle karşılaştırıldığında, formik asit için daha iyi sonuçlar elde edilmiştir.
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A B S T R AC T

Methanol as a fuel has some disadvantages such as toxicity and low electrocatalytic oxidation rate, therefo-
re, alternative liquid fuels are of interest for fuel cell applications. Formic acid has been considered as an 

alternative which fulfilled the requirements such as ease of transportation and handling and high theoretical 
open circuit voltage. Platinum supported on poly(vinylferrocenium) (Pt/PVF) is a promising catalyst for use in 
direct formic acid fuel cells. This work deals with electrooxidation of formic acid on Pt/PVF catalyst system 
and comparison of methanol and formic acid. According to the scanning electron microscopy (SEM) images, Pt 
particles are well dispersed over the polymer support. The Pt/PVF catalyst displays enhanced catalytic acti-
vity towards formic acid oxidation. When compared with methanol electrooxidation at the identical conditions, 
better results are achieved for formic acid oxidation.
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INTRODUCTION

Recently, direct fuel cells which use liquid 
fuels attract much more attention than the 

hydrogen based ones mainly because of the high 
cost of miniaturized hydrogen containers and 
the potential dangers in the transport and use of 
hydrogen. Among various liquid fuels, methanol 
has been extensively investigated due to its 
impressive energy density. However, because of 
its toxicity, low electrocatalytic oxidation rate and 
limited compatibility with Nafion® membranes 
(hence use of low methanol concentrations), 
alternatives to direct methanol fuel cell (DMFC) 
have been investigated [1,2]. Direct formic acid 
fuel cell (DFAFC) has been the focus of such 
investigations because of its advantages over 
DMFC such as higher theoretical open circuit 
potential and lower fuel crossover [3-5]. Formic 
acid is a non-toxic liquid which is inflammable, 
thus its storage and transportation is relatively 
easy and safe. It is well known from the previous 
studies that Pt-based catalysts show good 
catalytic activity towards electrooxidation of 
formic acid [1,5-9].

Incorporation of metal nanoparticles onto 
suitable supporting materials greatly enhances 
the catalytic properties of the metals allowing 
the generation of metal nanoparticles with a 
controlled size and size distribution [10]. Many 
supporting materials were investigated for metal 
nanoparticles such as conducting polymers [11-
14], carbon nanotubes [15-17], graphene [18-20] 
and various hybrid materials [21-23].

Poly(vinylferrocene) (PVF) is a conducting 
polymer featuring redox properties which is 
commonly used as a favorable agent for preparing 
modified electrodes with desired surface 
properties [24]. Upon the advantages of using PVF 
for modification, simple electrochemistry with 
a reversible one-electron process, high stability, 
and ease of deposition of thin films using a variety 
of methods are the most outstanding ones. PVF 
oxidizes from methylene chloride to give the less 
soluble ferrocenium form of the polymer (PVF+) 
precipitating onto the electrode surface. Owing 
to these characteristics, PVF modified electrodes 
have been widely applied to many applications 
such as electroanalysis [25-27], biosensors [28-

30] and preparation of polymer supported metal 
catalysts [11,12,31]. 

In this work, electrooxidation of formic acid 
was studied on Pt nanoparticles supported onto 
PVF conducting polymer matrix. Structural 
characterization of the Pt/PVF catalyst 
system was evaluated by scanning electron 
microscopy (SEM) technique. Catalytic activity 
of the electrocatalyst was examined via cyclic 
voltammetry experiments performed in formic 
acid solutions in acidic medium. The system 
was tested using a homemade single DFAFC 
configuration in terms of fuel cell performance and 
open circuit voltage (OCV). Cyclic voltammograms 
(CVs) and OCV values were also compared with 
methanol electrooxidation at identical conditions.

MATERIALS and METHODS

Reagents and Instruments
PVF was prepared by chemical polymerization 
of vinylferrocene at 70oC for 24 h using 2,2-aso-
bis(2-methylpropionitrile) (AIBN) as the initiator 
[32]. Vinylferrocene and tetra-n-butyl ammonium 
perchlorate (TBAP) was purchased from Sigma-
Aldrich. AIBN was obtained from Alfa. Methylene 
chloride (HPLC grade), formic acid, H2SO4 and 
K2PtCl4 were obtained from Merck and used as-
received. Hydrazine solution was prepared using 
hydrazinium sulfate (NH2∙NH2∙H2SO4, Merck). 
All solutions were deoxygenated by bubbling 
pure nitrogen gas (BOS) prior to use in the 
electrochemical experiments.

The potential-controlled coulometric and 
cyclic voltammetric studies were carried out 
with CH Instruments System, Model 608B. The 
catalyst system was examined using a Gemini 
scanning electron microscope equipped with Leo 
32 Supra 35VP field emission scanning system.

Electrodes
In electrochemical experiments, a Pt disc 
electrode (A=7.85 x 10-3 cm2) was used as the 
working electrode. Before each experiment, the 
working electrode was polished with alumina 
(5.0 µm), then rinsed with triple distilled water, 
cleaned in ultrasonic bath and dried. During 
the electrodeposition of the polymer film onto 
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the working electrode, a Ag/AgCl electrode was 
used as the reference electrode. This electrode 
was prepared by anodic electrolysis of a silver 
electrode in 0.1 M HCl solution for 3 h at +2.1 V with 
a current density of 2 mA cm-2. The electrode was 
immersed in a separate compartment containing 
methylene chloride/0.1 M TBAP solution with a 
saturated amount of AgCl. In methylene chloride 
medium, a Pt wire in separate compartment 
containing methylene chloride/0.1 M TBAP 
solution was used as the counter electrode. In 
aqueous medium, a saturated calomel electrode 
(SCE) was used as the reference electrode and a 
Pt wire with a surface area of 2 cm2 in spiral form 
was used as the counter electrode.

Preparation of Pt/PVF Catalyst
Pt/PVF electrocatalyst was prepared according 
to the procedure described in our previous work 
[11]. The polymer was electrodeposited onto the 
electrode surface by the electrooxidation of 
1.0 mg mL−1 PVF solution in methylene chloride 
containing 0.1 M TBAP at +0.7 V vs. Ag/AgCl. The 
thicknesses of PVF+ClO4

−  films were controlled by 
the charge passed during the electroprecipitation. 
A charge of 1×10−3 C corresponded to 1.32×10−6 
mol of the oxidized PVF per cm2 (dry thickness 
of ∼300 µm, which corresponds to about 3×105 
layers) [33]. The resulting film is in a porous 
structure containing ClO4

− ions as the counter ion, 
ferrocene and ferrocenium groups (Figure 1).

Pt complex (PtCl4
2-) anions were incorporated 

into the polymer matrix using cyclic voltammetric 
scans between potentials -0.85 and + 1.15 V vs SCE 
via counter ion exchange process  in aqueous 2 mM 
K2PtCl4 solution without supporting electrolyte. 
Polymer-coated electrode containing Pt complex 
(PtCl4

2-) as the counter ion was immersed in 0.1 
M hydrazine solution stirred continuously at 
open circuit in order to reduce the Pt complexes 
completely to metallic Pt nanoparticles.

Single Fuel Cell Test
Nafion® membrane (NE 450, Aldrich) was used in 
the DFAFC construction. The anode was Pt/PVF 
catalyst system prepared using Pt foil electrode 
(1cm×1cm). Pt black-coated Pt electrode was used 
as the cathode material. 6 M HCOOH solution 
containing 0.5 M H2SO4 was used as the fuel and 
0.5 M H2SO4 solution which was saturated by pure 
O2 gas was used as the oxidant. The system was 
tested with a homemade single cell with a working 
area of 1 cm2. The cell performance was tested at 
ambient temperature and atmospheric pressure.

RESULTS and DISCUSSION

In order to observe the physical structure of the 
catalyst system, Pt/PVF catalyst was prepared 
on a piece of Pt foil (3 mmx3 mm) and monitored 
by SEM. The obtained SEM images revealed well 
dispersion of Pt particles over highly porous 

Figure 1. Electrochemically doped PVF.
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polymer matrix with diameters at the nanoscale 
around 50-60 nm (Figure 2).

We calculated the maximum theoretical amount 
of Pt loaded to the catalyst system taking into 
account the precipitated PVF per cm2 as 104 µg cm-2 
[33]. This amount of Pt loading itself is better than 
similar Pt nanoparticles-based catalysts for formic 
acid oxidation [9,34]. In fact, considering the actual 
ratio of Fe:Pt (hence PVF:Pt) as 10:1 based on our 
previous work [11], we obtained a Pt loading as low 
as 10 µg cm-2. This Pt loading can be regarded as a 
comparable catalyst loading indicating a reasonable 
noble metal consumption [35-37].

According to the most-accepted mechanism of 
formic acid oxidation, the reaction occurs via 
dual pathway mechanism [1,38-40]. In pathway 
1, direct oxidation of formic acid occurs via a 
dehydrogenation step without any intermediate. 
However, in the second pathway, formation 
of adsorbed carbon monoxide as a reaction 
intermediate occurs by dehydration followed by 
formation of carbon dioxide as the end product. For 
formic acid fuel cell applications, dehydrogenation 
is the preferable reaction pathway in order to 
avoid poisoning of the catalyst. CVs of uncoated 
Pt disc electrode and Pt/PVF catalyst in 0.5 M 
HCOOH solution containing 0.5 M H2SO4 are 

Figure 2. SEM images of Pt/PVF catalyst at two different magnifications.
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given in Figure 3 (vs. SCE). The shape of the CV 
of HCOOH on Pt nanoparticles is consistent with 
similar studies [9,41,42]. As shown, bulk Pt has 
negligible catalytic activity towards formic acid 
oxidation. For Pt/PVF catalyst, two peaks were 
observed in the forward scan. The first peak 
around 0.30 V results from direct oxidation 
of formic acid while the second peak at 0.66 V 
refers to the indirect path. According to these 
observations, oxidation of formic acid occurs via 
both pathways with Pt/PVF catalyst. 

We also compared the intensity of formic 
acid oxidation peak with methanol oxidation 

peak at the same concentration (Figure 4). It was 
observed that formic acid oxidation peak current 
was superior to that of methanol oxidation when 
recorded with identical Pt/PVF catalyst, which 
indicates advantage of formic acid over methanol 
for fuel cell applications.

In order to test the fuel cell performance of 
the Pt/PVF catalyst, we constructed a home-
made DFAFC with a working area of 1 cm2 in 
batch mode. When the anode was fed with 6 M 
HCOOH containing 0.5 M H2SO4, an OCV of 724 
mV was obtained with a maximum power density 
of 1.32 mW cm-2 at 4.4 mA cm-2. Graphs of current 

Figure 3. CVs recorded with (a) uncoated Pt disc electrode and (b) Pt/PVF coated Pt disc electrode in 0.5 M HCOOH + 
0.5 M H2SO4 solution, scan rate = 50 mV s-1.

Figure 4. CCVs recorded with Pt/PVF coated Pt disc electrode in (a) 0.5 M CH3OH + 0.5 M H2SO4 (scan rate: 50 mV 
s-1) and (b) 0.5 M HCOOH + 0.5 M H2SO4 (scan rate: 5 mV s-1).
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density versus potential and power density values 
are given in Figures 5 and 6 respectively.

Finally we compared fuel cell performances 
in DMFC [11] and DFAFC modes at identical 
conditions. According to the results presented in 
Table 1, using formic acid instead of methanol as 
fuel resulted with higher OCV and power density 
values at the same conditions.

CONCLUSIONS

Pt/PVF catalyst system was used for 
electrooxidation of formic acid in acidic medium. 
It was observed that the catalyst system with a 
low Pt loading showed enhanced catalytic activity 
towards formic acid oxidation. In order to reveal 
the advantage of formic acid over methanol as a 
fuel, CVs and fuel cell test results were compared 

Figure 5. Current density/potential diagram for single DFAFC using Pt/PVF catalyst as anode and Pt black as cathode 
at ambient temperature and atmospheric pressure in 6 M HCOOH.

Figure 6. Current density/power density diagram for single DFAFC using Pt/PVF catalyst as anode and Pt black as cath-
ode at ambient temperature and atmospheric pressure in 6 M HCOOH.
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at identical conditions. As expected, higher 
oxidation peak current values were obtained for 
formic acid with respect to methanol. Consistent 
with this result, a higher OCV was also obtained 
for DFAFC than that of DMFC. 
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