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APPLICATION OF MICROCARRIERS TO
A RABBIT KIDNEY CELL LINE "

(1) (2) (2)

C. Cirakoglu "7, G. Omurtay ", M. Arikan

Microcarriers (Cytodex 1) were applied to a rabbit kid-
ney (RK) cell line.

We found that 1 mg/ml Cytodexl was optimal for growth
of rabbit kidney cells. Rabbit kidney cells were subculte-
red every seven days when they were grown as a monolayer
in glass culture bottles. On the other hand RK cells grown
on microcarriers were subcultered every fifteen days. Cyto-
dex beads provide a large surface area for the cells and
therefore cells grown on Cytodex 1 maintain excellent grow-
th kinetics over long periods.

We conclude that microcarrier cultures are more econo-~
mical than the ordinary monolayer cultures.

Key words: Microcarriers, Cytodex 1, Cell line

INTRODUCTION

Microcarriers are a new idea in cell culture techniques pionee-
red by van Wezel [7].

In microcarrier cell culture, cells proliferate as a monola-
yer on small positively charded beads of sephadex which are sus-
pended in a medium contained in culture bottTes [3].

The large surface to volume ratio offered by the microcarrier
system results in high yields of anchorage dependent cells (often as
high as 5x10° cells/ml with 3-5 mg microcarriers/ml) [1].

(1) Hacettepe Universjty, Faculty of Science, Department of
Biology , Ankara,TYRKEY

(2) Hacettepe University, School of“Mediéine, Medical Biologv
Department, Ankara ,TURKEY




More than 80 different cell types have been reported to orow
successfuly on Cytodex 1 microcarriers [2] .

Cytodex 1Am1crocarriers are based on a cross-linked dextran
matrix which is substituted with positively charaged N,N-diethyl
aminoethyl (DEAE) groups to a dearee which is optimal for cell
growth. The charged groups are found throughout the entire matrix
of the microcarrier (Fig.1).

In this study we tried to arow a rabbit kidney cell line on
Cytodex 1. This cell line grew perfectly on it.

Also we established the microcarrier culture method in our
Taboratory. So we can try to arow other kinds of cells, particu-
larly transformed ones by this method. |

MATERIALS AND METHODS
[. CELLS AND MEDIA

The rabbit kidney cell line was obtained from World Health
Organization (WHO) Geneva, Switzerland.

RK cells were grown in Eanle's minimal essential medium (MEM)
supplemented with 10 % newborn calf serum and antibiotics.

I1. PREPARING CYTODEX 1 FOR CULTURE

Cytodex 1 was obtained from Pharmacia Fine Chemicals, Upsala,
Sweden. The dry Cytodex 1 microcarriers (1 mg/ml) were added to
a glass bottle and wereswollen in Ca++, Mq++ free PBS (50-100
ml/ar Cytodex) for at least 3 hours at room temnarature with occa-
siomal agitation [6]. The supernatant was decanted and the mic-
rocarriers were washed once with gentle aaitation for a few minu-
tes in fresh Ca*’, Ma*" free PBS.

After swellina the microcarriers in Ca**, Mq*™" free PBS, they
were allowed to settle, the supernatant being decanted and repla-
ced by 70 % (v/v) ethanol in distiiled water.



The microcarriers were washed with this ethanol solution and then
incubated overnight in 70 % (v/v) ethanol (50-100 ml/ar Cytodex)
for sterilization. The ethanol solution was remowed and the steri-
+4 +4

, Mg free

PBS and once 1in culture medium before use. Sterilized microcar-

lized microcarriers rinsed three times in sterile Ca

riers were resuspended in a small volume of culture medium and
transferred to the glass petri dish.

ITT. INITIATING A MICROCARRIER CULTURE

Rabbit kidney cells were put on the petri dish containing
Cytodex 1 and 30 ml MEM suppleménted with 10 % serum was added to
the culture. Microcarrier culture was incubated at 37°C with
occasional agitation.

IV. HARVESTING CELLS AND SUBCULTERING

The medium was drained from the culture and the microcarriers
washed for 5 minutes in a Ca++; Mg++ free PBS solution containing
0.02 % (w/v) EDTA.pH 7.6. The amount of EDTA PBS solution should
be 50-100 ml/gor Cytodex. The EDTA PBS was remowed and replaced
by trypsin-EDTA at 37OC with occasional aaitation.

After 15 minutes the action of trynsin was stopped by the addi-
tion of a culture medium containing 10 % (v/v) serum.

The products of the harvestina stens were then transferred to a
test tube. After 5 minutes the microcarriers settle to the bottom
of the tube and the cells can then be collected in the super-
natant.

RESULTS

Rabbit kidney cells attached themselve: to the microcarriers
3 hours after the cells were put . Cyvtodex 1. RK cells arew
well 10 hours after startina the micrvoucarr er culture,

Cells arown on beads of Cytodex 1 maintained excellent growth
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kinetics over long periods (Fig.2). We changed the culture me-

dium with MEM containing 3 % serum a week after the microcarrier
culture started.

Culture arown on Cytodex 1 were more homogeneous than monola-
yer and harvesting was achieved without centrifuging the medium,

, CH,CH,
Cross linked dextran O—CHZ—CHZ—N\
CH,CH,
Cytodex 1
Charges
Throughout

The matrix

FIGURE 1. Schematic Representation of the Charged Groups
on the Cytodex 1 Microcarrier

IGO‘ Cytodex 1
wn Monolayer
2 40
»

E
> 1.0
T
]

0.25;

0 100 200 300
Hours
FIGURE 2.

e Growth of RK Cells on Cytodex 1 Microcarriers
and in Glass Bottles as Monolayer



DISCUSSION

We applied a microcarrier culture method to rabbit kindey cell
line. Cells easily adapted to cytodex beads.

Cytodex beads provide a large and smooth surface for the cells
to attach on [5] .

We modified some of the stages of the microcarrier culture
method. We did not stir the suspension culture [4] , because the
magnetic stir bar can cause collision of the beads. Collision
of beads was harmful for ce]]s.‘Also stirrina causes the détac-
hing of mitotic cells from the beads. We therefore put 30 ml of
medium in petri dishes containing the microcarrier culture of
RK cells. The occasional aaitation on the petri dishes was
enough to keep this kind of suspension culture healthy.

The optimal concentration of Cytodex 1 beads was 1 mg/ml for RK
cells. Wheh the concentration of Cytodex 1 was high, they preci-
pitated at the bottom of the petri dish, and they stuck to each
other. But when the Cytodex 1" concentration was decreased to

1 mg/ml, an ideal culture condition was obtained.

The microcarrier culture method we used in this study is more
economic than the monolayer cu]ture,'since we used a low serum
concentration in maintaining the culture medium, e.g. 3 % serum
supplemented MEM was used in the microcarrier culture, while 5 %
serum supplemented MEM was used in the monolayer culture.

Also RK cells in the microcarrier culture were subcultured only
every 15 days, whereas RK cells in the monolayer culture were
subcultured every 7 days.

We can say that Cytodex 1 saves up to 50 % of our labour because
it is no longer necessary to process larae numbers of petri dis-
hes or culture bottles.

We plan to try to grow some of the poorly growing transfor-
med cells on microcarriers.



OzZET

Tavsan bobredi daimi hiicre kultiirine mikrotasivicilar
{Cytodex 1) uygulandi. Tavsan bobredi daimi hicre kiiltiirline opti-
mal liremesi icin mikrotasivici konsantrasyonunun 1 ma/ml
Cytodex 1 oldudu saptandr.

Kiltiir siselerinde monolayer olarak liretilen RK hiicreleri her
7 giinde bir pasaj vapildidr halde, mikrotasiyicilarda iiretilen
RK hiicreleri 15 giinde bir pasaj yapildi.

Cytodex bilyeler hiicreler icin genis yiizey sajladidindan
Cytodex 1 izerinde ireyen RK hiicreleri uzun zaman periyodunda
sadlikly lireme kinetidi aosterdiler.

Mikrotasiyicy kultiurlerin monolayer kiiltiurlerden daha ekonomik
oldudu soylenebilir,
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MODULAR REPRESENTATIONS OF PSL(2,7)
IN CHARACTERISTICS 3 and 7.

M.I. Khanfar‘l’

In [6] , the ordinary representations of the unimodular
group G = PSL(2,7) of dimensions 3,6,7 and 8 were explicitly
constructed over the complex field. The aim of this work is
to investigate the modular representations of G cver finite
fields, This paper determines the irreducible modular repre-
sentations of G in characteristics 3 and 7.

Key words: Modular representation, Characteristic, Decompo-
sition matrix, Blocks.

1980 Subject Classification: 20C20

1. INTRODUCTION

Most of modular representation thecory is due to R. Brauer. His
results were stated_ in the language of modular charac-
ters in ( [11, [2] ). ‘

1.1.DEFINITION. Let G be a finitegroup and p a rational prime. An
element g in G is p - regular if its order is relatively prime to
p, and p - sinqular if its order is a power of p,

Since all conjagate elgments in G are of the same order, we speak
of the p - reqular conjugacy classes of G.

The following two established results ([31,[7 1) will be applied
without further reference.

(1 Mathua{f:r; Pept o, KNing sbauiazie tiniv., Jdeddan, SAUDT ARABIA.
This work was supported by a grant from Yarmouk University.

i



(1) The number of absolutely irreducible modular representations
of G in a modular field of characteristic p is equal to the number
of p - regular conjugacy classes of G.

(2) Let o He an absolutely irreducible ordinary representation
of G. If pm is the highest power of p dividing the order of G and
the degree of ¢,then ¢remains absolutely irreducible as a modular
representation of G in characteristic p.

The following proposition is needed and can be applied in any
characteristic p # 2.

1.2. PROPOGSITION. Let K be an algebraically closed field of charac-
teristic p#£2. Then G = PSL(2,P) has no faithful representation of
degree 2 in K (71 .

Proof. Let f : G ——>GL(2,K) be a monomorphism. Then
det : f(G) —>K* is a homomorphism onto a finite subgroup of K*.
All such subgroups of K* are cyclic.

If p>3, then f(G), being simple, is a subgroup of SL{Z,K).
If p=3, then G=A, and so at least det (f(G)) < {1,-1}.

Choose an involution x in G such that f(x) is in SL(2,K). Putting

f(x) in rational canonical form, we find that f(x) is similar to

-1 . -1 .
[ J , and therefore f(x) = [ j[ . But then this
. - . -1

implies that f(x) is in the center of the simple group f(G); a
contradiction.

2. REPRESENTATIONS IN BLOCKS

We consider a method of diviributing the representations of a
fiotre gqrou G intoblocks (13 ) . 14} . [5]). Let K be an algeb-

raic number field which 1s a splitting field forr G, and R the ring
of algebraic integers in K. Let S be a prime ideal in R containing
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the unique rational prime p. Let RS be the ring of S - integral

elements in K. Then RS is a principal ideal ring with quotient

field K; and K:R/ = R/ is a modular field of characteristic p
RS S

( [13, (31, [4] ). Theory of integral representations of finite

groups asserts that, every irreducible representation of G over K

can be written as an integral representation of G over Rs'

Let 5i be the sum of the elements in the conjugacy class Ci of
G,1i=1, ..., n. Let o, be all irreducible int?gral representa-
tions of G, and X the character of 0, - The sums Ci form a K-basis
for the center of the group ring KG as well as a K-basis for the
center of KG. Thus each Ek commutes with each g in G, and therefore
the matrix¢i (Ck) commutes win the matrix oi(g) for each i.Schur's
Lemma asserts that each ®; (Ck) is a scalar matrix; that is

(*) ¢(C) = f; (C) I, l<k<n .

K= f

Since Qi is an integral representation, we have each fi(ék) is in
R,. Taking traces in (x), we have

. .| x; (g,)
£.(C, )= | k| i k',
x. (1)

;glan, I1<i, k<n .

itk

Extending fi to a map on the center of KG by linearity, we have

fi (Cjck) = fi (Cj) fy (Ck) .

We define ?& : center (KG) >K by

fi (Ck) = fi (Ck) , i<k<n

where the bar denotes reduction modulo S. Two irreducible repre-
sentations 0, and o of G belunyg to the same block iff ?} = ?ﬁ.
Ifloi belongs to a block B, ther ull vrreducible modular consti-
tuents of o beleng necessarily tu B.
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2.1. DEFINITION. Let p be a rational prime, n a rational integer.

e+l

e if pe divides n and p does not divide n.

We write vp (n)

m.

Assume Vo ()6}
2.2. DEFINITION. The defect d of a p - block B is given by
d=m- min {vp ( X; (1)) : o, inB}Y .

Clearly each d»0. A p - block of defect o contains only one ir-
reducible representation o, whose degree is divisibleby pm [1]

3. 7-MODULAR REPRESENTATIONS OF PSL(2,7)

The simple group G = PSL (2,7) = < «.p | <=2 =(« BP=(=*s}=1>
oforderl68=23 . 3.7 has 6 conjugacy classes of elements; and there-
fore 6 ordinary irreducible characters given below.

3.1. TABLE. lrreducible Characters.

lgl-| 1 2 4 3 7t 7"
)l 237 23 22 3 7 7
X 1 1 1 1 1
X 7 -1 -1 1 0 0
X3 6 2 0 0 -1 -1
X4 8 0 0 -1 1 )
Xg 3 -1 1 0 z Z
X 3 -1 1 0 z z
where |g| = order of geG; |C(g)| = order of centralizer of
. ) -1+iv7
ginG; z = —
G has tour /7 - reguldr-CUnjugaLy tlasses and hence four absolutly
irreducible 7 - modular representations. The ordinary irreducible

representations of degrees 1 and 7 remain irreducible as moduldr

representations of G of characteristic 7.

s 3
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By Proposition 1.2 the two ordinary irreducible representations
of degree 3 are irreducible as modular representations of
G in characteristic 7; but of course these representations are
equivalent in this characteristic.

To determine the fourth irreducible 7 - modular representation
of G, we determine first the blocks of the ordinary irreducible
representations of G and the defects of these blocks. To distribute
these representations into 7 - blocks, we form the table:

~ 1 21 4 56 28 24
A
. 1. . a7 3 3
=11 7 1 . a4
1 -7 14 . 45 46

1 -3 6 8

6=~1+iVv7.

Reducing the table modulo a prime. ideal containing 7, we obtain:

= -

et et et e et
'
.
+
W W W w w
w W w w w

30011 )

Thus there are two 7-blocks:

Bl= {1,3,3,6,8,} of defect 1, and

BZ= {7} of defectro;

where the representations in each block are indicated by their
degrees. 1If n is the degree of the unkown irreducible 7 - modular
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representation of G, then 1,3, n are in Bi' The possible values
for n are 4,5,6,8 . Since B1 is of defect 1, each entry in the
decomposition matrix D1 associated with B1 iseitherOor 1([2]1,[31 )
It follows that the only possible value for n is 5 and D1 has the
form:

mod. deg. 15 3
ord. deq.

. 1
1

— —

Hence the decomposition matrix D of G is of the form:

D 0
D= . Dy =[17.
0 ( D2
In fact the ordinary 6 - dimensional representation of G obtained
in [ 6] , when reduced in characteristic 7, fixes the hyperplane
<ej - > . If we restrict to this hyperplane,

then with respect to the basis {ej - e =2, .... 61}
we obtain:
[] 2 1 1 17 ~1 -1 -1 -1 -17
1 1 2 1 1 . |
« Sl 1 1 2 1] . . ) .
1 1 1 1 2 . . 1
B 1 1 1 1] L - 1

4. 3- MODULAR REPRESENTATLONS OF PSL(2,7)

G = PSL{2,7) has five 3 - regular conjugacy classes of elements,
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and hence five irreducible 3 - modular representations. The ordinary
irreducible representations of G of degrees 1,3,3,6 remain absolutely
irreducible as modular representations of G in characteristic 3.

Following the methods of the preceding section, we find that the
ordinary irreducible representations of G are distributed into four
3 - blocks:

B1 {1,7,8 1 of defect 1,

and B

o 31, B3 = {3}, BA = {6} of defect 0;

where the representations in blocks are indicated by their degrees.

Let the unknown irreducible modular representation of G be of
degree n. Then n is in Bl‘ The possible values for n are then 4,5,
7,8. Since Blis of defect 1, each entry in the decomposition matrix
D1 associated with B1 is either O or 1. It follows that the only
possible value for n is 7; and thus D1 is constructed as follows:

mod. deg. 1 ’ 7
ord. deg. 1 |1
71. l
8|1 1

Hence the decomposition matrix D of G is of the form:

D = D3
0 D4
where Di = [11, i=2,3.,4.
0ZET

Karmasik sayilar cismi Gzerinde boyutlar: 3,6,7 ve 8 olmak i-
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zere bir G=PSL(2,7) unimodular grubunun adi temsilleri yapilmstir

[él.

Bu ¢alismanin amaci, sonlu cisimler izerindeki & grubunun mo-

ditfer temsillerini arastirmaktir. Bu arastirma 3 ve 7 karakteris-

tikleri i¢in G nin indirgenemeyen temsillerini belirler.

(V)
.
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ON THE CLASS OF PARANORMAL OPERATORS

v Kutkut ()

In this article we study some properties of the class of
paranormal operators on an infinite dimensional separable
complex Hilbert space H. We prove the following.

1. The tensor product and the direct sum of two paranormal
operators are paranormal.

2. The set of paranormal operators is strongly (uniformly)
closed and arcwise connected.

3. Every paranormal weighted shift is hyponormal.

4. If T is a paranormal weighted shift on H then Pp(T) is
paranormal on H(but Pn(T) may not be hyponormal), for any
polynomial Pn.

Key words: Paranormal operators, weighted shift, Hyrecnor-
mal operator.

1980 Subject Classification: 47B20

1. INTRODUCTION

We consider an infinite dimensional separable complex Hilbert
space H. We denote by L(H), all bounded linear operators on H. As
in [1] , an operator Te L(H) is said to be paranormal if ||Tx||25
||T2xH , for all unit vectors xe H, ( or equivalently
[[Tx] ]S < [1T°%|| - |[x] |, for every xeH). Recall that an operator
TeL(H) is said to be hyponormal, if [{Tx}!.|T"x||, for every x¢ H
(or equivalently TT.T T%). An operater 1¢L(H) is called normaloid

(1) Mathematics Dept.,King Abdulaziz Univ., Jzddah, SAUDI ARABIA.

vt
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if
HTI= sup (](Tx,x) | @ xeH, [|x]] =11 =w(T),

where w{T) = is the numerical radius of 7. Istratescu, Saito and
Yoshino [5] studied some properties of paranarmal operators. They
proved that every hyponormal operator is paranormal, and every
paranormal operator is normaloid. In [5] , it is also proved that
the inverse of an invertible paranormal operator is paranormal.

In 1980, Chourasia and Ramanujan [ 1] studied more properties
of the class of paranormal operators on Banach spaces rather than
Hilbert spaces. In{1], it is proved that every isometry is pa-
ranormal. '

In this article we study further properties of paranormal ope-
rators. Let P(H) denote the class of paranormal operators on H.
We prove that P(H) is arcwise connected and strongly {hence uni-
formly) closed. It is proved that the tensor product and the di-
rect sum of two paranormal operators are paranormal operators.An
operator Te L(H) is said to be a weighted shift if there is_a
sequence (an) of complex numbers and an orthonormal sequence (en)
in H, such that T e =anen . if n is an integer, T is called a
bilateral weighted shift and if n is restricted to the positive
integers, Tis called aunilateral weighted shift; the sequence

(an) is called the sequence of weights,

We should remark that there is no loss of generality in assu-
ming that the sequence of weights (an) consists of positive real
numbers, since two weighted shifts with weight sequences (an),(Bn)
(resp.) are unitarily equivalent if, and only if,|an| = ]Bnl for
every integer n, (see Shields{[7]), so in what follows the sequence
of weights is assumed to be of positive real numbers. In[873, it
1s proved that every weighted shift with a non-decreasing sequence
of weights 1s a hyponormal operator. Thus every weighted shift
with non-decreasing sequence of weights is paranormal. We prove

that every paranormal weighted shift is hyponormal. We give an
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example of a paranormal operator which is not hyponormal. Shields
[7] asked whether Pn(T) is a hyponormal operator for a hyponormal
unilateral weighted shift T and every polynomial Pn. In 1984, Peng
Fan [6] gave a negative answer to Shield's question; he construc-
ted a hyponormal unilateral weighted shift T for which'Pn(T) is
not hyponormal for a given polynomial Pn. Here we prove that Pn(T)
is a paranormal operator for a paranormal weighted shift T and

any polynomial Pn‘ In fact &(T) is a paranormal operator for a pa-
ranormal weighted shift T and any function &, which is analytic on
the spectrum  o(T) of T.

2. RESULTS

To be precise let Hlﬁ H2 denote the completion of the tensor
product of the two Hilbert spaces Hl and Hz' If TeL(Hl), SeL(HZ)
then the tensor product 78S of T and S belongs to L(H] Q HZ)' Con-
cerning the tensor product we prove the following.

2.1. PROPOSITION. If T,S are paranormal operators on Hl,Hz(resp),
then T @ S is paranormal.

Proof. If x,y are unit vectors, then x 8 y is a unit vector and
we have

2 2 2 2 2
78S x gy 1|7 = Tx|17 1Sy < [T ISy
P es?xeyl=11T 0 x 8yl
which implies the conclusion of the praposition.

2.2. PROPOSITION. If Te L(Hl)’ S eL(Hz) are paranormal, then the
direct sum T B Se L(Hl ) H2) is paranormal.

Proof. If x = X g Xo is a unit vector in H1 g H2 then,
2 2
e =117 %11

SIS T T TS50 ] 5y 1)

[T @ Sx 1S x, 017
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CHTo% T 1855 11 1]
(172 8 2| )= (T & $)%xI] ,

A

[FQS

which shows that T 8 S is paranormal.

2.3. THEOREM. The set P(H) is strongly (hence uniformly) closed and
arcwise connected.

Proof. Let (Tn):.P(H) be a sequence such that (Tn) converges
strongly to Te L{H). Then IJTnx-Txll-—> 0 as n —=, for any vec-
tor xe H, and in particular for |x|{= I,

2 . L1
HT x eI Txllce+ T X1 2,
for n large enough.

Since a product: of operators is sequentially continuous (see
Halmos [3] , problem 93 page 57), in the strong operator topology

Tﬁ canverges strongly to T2. Thus,

1
2 .1
xdlses (17112

<e+ (e+||T2X|“ ¢,

and since e is arbitrary, I}Txllzglszx[I, which means that TeP(H);
P(H) is strongly closed. Since every uniformly convergent sequence
is strongly convergent one concludes also that P(H) is uniformly
closed.

Tor show that P(H) is arcwise connected, it is enough to show
that x .Te P(H), for every scalara and TeP(H).Now let ||x][=1,
and TeP(H), then

HaTx]12 =a 1] 1P<xxfmx] |
. 1
<« %)% ) 2

< D).

This completes the proot of the theorem. The following proposition
shows that every operator unitarily equiv.lent to a pdaranormal o-
perator is paranormal.
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2. 4. PROPOSITION. Let Te P(H), then for any unitary operator u on
H, uTu eP(H).

Proof. If TeP(H), u is a unitary operator on H, then for a unit
vector xe H, we have x = uy for some unit vector yeH, and

2
T s 12 =T 2 = v
2 2 *
<171 =T x|
2 * * .2
<[ JuTu™x ] <] JuTu )X,
which is as desired.

2 5. PROPOSITION. If T, SeP(H), S is an isometry which commutes
with T, then TSe P(H).

Proof. If x is a unit vector in H, § is an isometry. then y=5x
is a unit vector and one obtains ”

skl 2 =1yt < 1Tl
<1172sxl| = |IsTsx] |
<1951,
since S commutes with T, i.e., TS is paranormal.

The following proposition is concerned with the integral powers
of a paranormal operator.

2 6. PROPOSITION. Let Te P(H), then for every positive integer n,
n
TeP(H).

Proof. If T is paranormal then it is normaloid (see [5] ) which
is equivalent to saying "] =[x ||", for every positive inte-
ger n. Since||Tx]| F < ||T2x|| for any unit vector xeH, one conclu-
des that

1] 12 = (el 1) <l I 1"

NEMTEIREEUR

A

which means that ™ is paranormal.
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3. WEIGHTED SHIFTS

The following example shows that the class of hyponormal opera-
tors is a proper subclass of the class of paranormal operators.

3.1. EXAMPLE. Define the weighted shift T on H, using the orthonor-
mal sequence (en) of H, by the equality

e
_ {7 n+l, n<é,
Te_ -{

2en+l, nx>3.

This weighted shift has the following properties :

1. The operator T is hyponormal, since the sequence of weights is
nondecreasing.

2. In particular T is paranormal.

3. Let P(z) =z + azz, 0<a < Jigu then P(T)=T+aT2 is not hyponor-

mal; for the proof (see [6] ).

4. We prove that P(T) is pargnormal. Indeed, elementary computation
shows that:

Cn+l +’a €2 T <l
P(T)en= € t 2a e, N = 2,
2e gtdae o, n>3.
- This implies that
f 1+ a? , ng<l,
2_ 2
|lP(T)en|]-i 1+ 4a , n=2,
4 +16a° . n>»3.

The operator P2(T) is given by,

2
Cnotld €py3 + 2 €neq » -

2 2
P (T)en= en+2+2a €3 * 2a €ned

2
en+2+4a €3t 4a eq N = 1,
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2e + 8a e + 8a2 e ns=2

P2(T)en= { n+2 n+3 ) n+4’ ’

fe o + l6ae 5 + lbae  ,.n > 3.

From which we conclude,

1+ 4a2 + a4 , h<-1,
i+ 4a2 + 4a4 , N =20,
1PP(Tye |12 =4 1+ 16a%+ 16a° , n=1,

4 + 64a°+ 643"

16+ (16)%a% + (16)%a%, n>3.

&~ D
n
~no

By comparing the value of||P(T)en||4 and ||P2(T)en||2 one concludes
that [[P(T)e, [ |2 <|[P?(T)e | , which is as desired.

3.2. REMARK. The restriction on a to be such that 0<a < JLg is

needed in [ 61 to show that P(T) is not hyponormal but it is not
needed to show that P(T) is paranormal.

3.3. EXAMPLE. Let T be the weighted shift defined on (en) by

% en+l » n<0

It is clear that T is hyponormal and therefore it is paranormal.
Hartman [ 4] showed that the spectrum o(T) of T is not a spectral
set of T. Recall that A subset X of the complex plane is said to
be a spectral set of T if o (T)< X and for any rational function
ewith poles off X we have | |&«T) ||<§29|0(Z)| (=]]e| |-

This example shows also that it is not necessary for the spectrum
of a paranormal operator to be a spectral set.

The following proposition shows that every paranormal weighted
shift must be hyponormal.

. 3.4, PROPOSITION. If T is a paranormal weighted shift, then its
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sequence of weights (un) satisfies the inequality

(12 <a .Q .
n—n N+l

Proof. If (e } is the orthonormal sequence on which T is defi-

2 2
ned, then IITe |] = a, and HT e, e a .o and since T is para-
2
normal then e <a .o ).

Example 3.1(4) is not only true for P(z) = 2 + az2 but it is
true for any polynomial. This is shown in the following.

3.5. THEOREM. Let TeP(H) be a weighted shift, Let P(z) be a poly-
nomial of degree k. Then P(T) is a paranormal operator.

Proof. Let (en) be an orthonormal sequence in H, (a ) the weight

sequence. If T defined by Te n = %nen+l is paranormal then @ <00

for every integer n. If P(z) is a polynomial of degreek, i.e.,P(z)=
l+alz + a222 + oo b az, Ay complex numbers, i=1,2,...,k, then an
elementary computation shows that,

2 2 2
[|P(T)enll =1 +|all u2 !azl b tees Iyl “§'°%+1"°§ik

and

PP (e, (17 = 1+ alay1%2 +|2a, + a) 7;]% a2.o

aep Foeee
O‘r21+l "‘°%+2k

By comparingHP(T)enH4 andIIpZ(T)enll one concludes that
HP(T)enH2 5||P2(T)en||, for every integer n, which shows that
P(T) is paranormal as desired.

3.6. THEOREM. Let TeP(H) be a weighted shift. If® is any analytic
function on the spectrum o{(T) of T, then @(T)e P(H).

Proof. Since #is an analytic function then there is a sequence
of polynomials (Pk) which converges uniformly to ®. By Theorem 3.!
Pk(T) is paranormal for every k, By Theorem 2.3 the uniform li
mit ®(T) = u-lim PK(T) is paranormal.
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We conclude this article with the following
3.7. THEOREM. If T, SeP(H) are weighted shifts then T + S, TSg P(H).

Proof. If (°n)’ (en) are the weight sequences of T, S resp: and
(en) the orthonormal sequence in H, on which both are defined, then

u% <ap- un+l and 52<:B - B 41+ For the product TS, we have
[1Tse,, || a?, ) - 82 while, ||(TS% e ll = Jn+l 0,3 By B ,p0 fOT
every integer n, therefore [ITSe 11" < IKTS) e ll. Thus TS is para-
norﬁgl. For the sum T + S, direct L&ICUIatIOH shows that
[](TeS)e, |12 = o2 + 20_ B+ 8
n n nn ﬁ’
and
2
H(T+S) enHz a2 °‘r2\+l + 2a '°r21+l + 20.%. %4l Bn+l +
2 2 2

+4“n‘°n+18n‘ Bn+1 Bn nel * 28 n° Bn+l' “nel?

+“%‘ B%+l + Z“n‘BnB%+l+B%' Br21+l
Comparing the values of |[(T+S)e, |ﬂ and | |(T+S) en IF, one conc-
ludes that

[]{T+S)e |'2<||T+S e ||

for every integer n, which is the required conclusion.

OZET

Bu ¢aligmada sonsuz boyutlu ayrilabilir karmagik bir H Hilbert
uzayl lzerinde paranormal operatérlerin sinifinin bazi 6zellikle-
ri lizerinde calisiyoruz. Asagidakileri kanitliyoruz.

1. Iki paranormal operatérierin tensdr carpimli ve direkt topla-
mp paranormaldir.

2. Paranormal operatorlerin kimesi kuvvetli (dizgiin) kapali ve
yay badlantilidir.

3. Her paranormal yiiklenmis kayma hiponormaldir.
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4, T,H lzerinde paranormal yiikklenmis kayma ise bu durumda, her
Pn polinomu igin Pn(T),H izerinde paranormaldir (ama hipo-
normal olmayabilir).
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ERGODICITY OF HILBERT SPACE OPERATORS

M. Kutkut(1)

In this article the following theorem is proved.
Theorem: If T is an ergodic operator (in the uniform, strong
or weak operator topology) on an infinite dimensional complex
Hilbert space and F is a continuous multiplicative function
then F(T) is ergodic (in the respective topology). This
result implies that S T 8 is errodic for any invertible
operator S : the adjoint T of T is ergodic. If T is subnor-
mal then the minimal normal extension N of T is ergodic.
Moreover the dual S of a pure subnormal operator T is ergodic.

Key words: Hilbert space, Multiplicative function, Ergodic
operator

1980 Subject Classification: U47A35

1. INTRODUCTION

Let X be a Banach space, and L(X) the algebra of all bounded
linear operators on X. Lotz in [3] introduced the following defi -
nition of ergodicity.

1.1. DEFINITION. Let GeL(X) be a multiplicative semi-group of opera-
tors. Denote by chG the convex hull of G. Then G is said to be
ergodic if the closure of chG has a zero element, i.e., there exists
a projection operator P in the closure of chG such that PS = SP=P
.- for every operator S in the closure of chG. If the closure of ch G
_is‘ taken in the uniform operator topoloay then G is called uniformly
v 'ergod_';tc_and if the closure of chG is taken in the strong operator

(L}J}H&ihqhatxcs Dept ., King Abdulaziz Univ., Jeddah, SAUDI ARABIA.
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operator topology then G is called strongly ergodic. If the underlying
space is an inner product space then weakly ergodic may be similarly
defined. Denote these closures of c¢hG by uchG, schG and wchG res-
pectively.

1.2. DEFINITION. Let TelL(X), then T is said to be ergodic (in the
uniform, strong, or weak topology (for inner product space)) if the
cyclic semigroup GT=1T": n=0 ,1,2, ...} is ergodic in the respec-
tive topology.

2. RESULTS

In this paper we study ergodicity of operators on Hilbert space.
If H is an infinite dimensional complex Hilbert space, L{H) deno-
tes the algebra of all bounded linear operators on H.

Let U be the unitary group on H. The unitary orbit U(T) of TetL(H)
is defined by

U(T)={u Tu* : uel, u* = adjoint of uy.
The similarity orbit S(T) of TeL(H) is defined by
S(T) ={s 7 s™!: s is invertible }.
Now, we are ready to introduce our results.

2.1, LEMMA. If Fisa I-1 multiplicative function, and TeL(H), such
that F(T)eL(H) , then F induces amultiplicative function F between

GT and GF(T)‘ which is one to-one and onto.
Proof. Define F : Gy —_>GF(T)’ by
FOT™ .= £ ().

It is an easy matter to show that F is multiplicative, one-to-
one and onto.

2.2. REMARK. F # 0, 1 , P ; P is a projection.

2.3. LEMMA. The multiplicative function F defined in Lemma 2.l1is
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extendable to amultiplicative function denoted by F (for simplicity)
between chGT and ch GF(T)’ which is also one-to-one and onto.

Proof. If Aech GT then there exist positive integers "1"'ﬁ’ M

and non-negative real numbers al,...,ak:ziai = 1 and A=zi aiT 1,

n. ns
Now the extension of F is defined by F(A) = ziaiF(T l)=zl.aiF I(T).

m,
If Bech Gy then B = § bj T3, for some positive integers Mpseess

2
and some non-negative real numbers bl""’bl whose sum is one, and
n. Hm,
- 1] i b -
thus AB= ? § a; bj T , and since i aibj = 1,AB echGT that

is , chGT is a semi-group (See Lotz [3] ,p. 146). The function F
is multiplicative, since

n.+m.

F(AB) = ;2 ajby FI(T 1y

ni ITI‘_j
= (% aby FT Y F(T )

ni mJ.
ziai F(T %)) (zibj F(T ¥))

F(A).F(B).

It is not difficult to show that F is one-to-one and onto.

2.4, LEMMA, If the multiplicative function F is continuous,.then
the function F defined in Lemma 2.3 isextendable to a multiplicative
function (denoted by F) between the closure of ch GT and the closure
of ch GF(T)’ which is also one-to-one, onto and continuous.

Proof: In the uniform\topology, if A euch GT, then there is
(A;)c ch G; such that ||A-A;]] —>0 as i —>=. Since F is con-
tinuous and multiplicative ChGF(T) and F(chGT) can be identified.
By continuity of F, F(Ai) converges uniformly to F(A) and we can
define F: uch GT ——>uch GF(T) by F(A) = u-lim, F(Ai) , where
u-lim. means uniform limit. From the definition of F, it is clear
that F is continuous on uchGT.
Since F is one-to-one in Lemma 2.3 then by linearity, F is one-to-
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one on uch GT.If B cuch GF(T) , then there is a seguence (Bi):ch

GF(T) such that (Bj) converges uniformly to B. Since BieCh GF(T)’

then there is Ai ech Gy such that Bi= F(Ai) {because F is onto by
lemma 2.3).Since F is continuous and one-to-one, it is invertible
and thus (Ai) converges uniformly to A e uch G, so that by the de-
finition of F, F(A) = B or F is onto.

If A,B etch G, then A=u-lim. Ai,B=u—lim Bi for(Ai),(Bi)czchGT.

T
Since multiplication is continuous (and in particular sequentially
continuous) in the uniform topology(see Halmos[ 2 1, problem 91,page
57) we have, AB=u-lim AiBi' This implies that.

F(A B)= u-lim F(AiBi) = u-lim F(Ai)‘ F (Bi)

= y-lim F(Ai)u-lim F(Bi) = F(A) F(B),

since F is multiplieative on ch GT by Lemma 2.3. Thus F is multip-
licative on uch GT‘

For the strong topology, a similar argument can be given, since the
product is sequentially continuous in the strong operator topology
(see Halmos[ 2], problem 93 page 57).

Since the product is not even sequentially continuous in the weak
operator topology, (see Halmos(2], problem 93 page 57) we provide
the following argument to show that the extension F:wch GT —s wch
GF(T) is multiplicative.

It is known that if Ai —> A weakly then AiB —s AB, BAi —>BA weakly
for any fixed operator B(see Halmos [2] problem 92 page 57).

If A ewch GT and B ech GT’ then there is (Ai) in ch GT such that
(Ai) — A, weakly and thus (AiB) —> AB weakly, as i —»=; and by
the continuity of F, {by the definition of F in the weak aperator
topology), and since F is multiplicative on ch 6r>

F(A B)=w-lim F(AiB)z w-1im F(Ai) F(B)
=F(A). F(B), .o (2.1)
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where w-1im means weak-limit.

Now, assume that both A, B e wch GT’
B=w-lim Bj. Therefore ABi-——e-AB weakly as 1 — =and ABe ch GT,
this implies that (by continuity of F in the weak topology):

then there exist (Bi) in ch GT:

F(AB) = w-lim F(A.B,)
w-1lim F(A). (Bi),by (2.1)
F(A).F(B)

i.e., F is multiplicative on wch'GT.

fl

»

2.5. THEOREM, Let Te L(H) be an ergodic (in the uniform, strong or
weak operator topology) operator, then for a l-1 continuous multip-
licative function F, for which F(T) e L(H), F(T) is ergedic.

Proof. By Lemma 2.4, F induces a continuous multiplicative function
denoted by F, (for simplicity) which is one-to-one and onto between
the closure of ch GT and the closure of ChGF(T)’ (in the uniform,
strong, or weak operator topolqu). If P is a zero element of the
closure of ch GT then F(P) is a zero element of the closure of ch
GF(T)’ {in the respective topology). Indeed, since P is a zero e-
lement, then PS = SP = P, for every S in the closure of ch GT' Lf
A is an element in the closure of ch GF(T) there is S in the clo-
sure of ¢h GT such that A= F(S), since F is one-to-one and onto.
Since F is also multiplicative one obtains,

F(P).A<F(P).F(S)=F(P.S)=F(P)
_F(S P) = F(S). F(P)
=A.F(P).
This implies that F(T) is ergodic.

We pfove the following results as corollaries of the Theorem.

We should remark that the term ergodic is understood in the three
topologies unless otherwise mentioned.

© 2.6. COROLLARY. Let Te L(H) be ergodic. If S is an invertible ope-
rator on H, then ST S™! is ergodic.

¢
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Proof. Define F:6. —G by F(T")=s 1"\ 1t is clear that
STS
F is 1-1, multiplicative and continuous (for any fixed operator S,

see Halmos [ 2] problem 92). It is also one-to-one and onto. By the

Theorem F(T) = S T S'1 is ergodic.

2.7. REMARK. Corollary 2.6. means that if T is ergadic then every
element in the similarity orbit S(T) of T is ergodic.

2.8. REMARK. Since every unitary operatoru is invertible and u"1=u*,

the adjoint of u, it follows from Corollary 2.o, that u T u*is er-
gadic and thus, every element of the unitary orbit U(T) is ergodic.

2.9. COROLLARY. If TeL(H) is ergodic then the adjoint T* of T is
ergodic.

Proof. Define F: GT ——aGT*by F(T"):T*n which is amultiplicative
isometry (one-to-one) and onto. Moreover, F is continuous (in the
uniform and weak topology but not in the strong,see Halmos {2 Iproblem
90 page 56). By the Theorem F(T) = T* is ergodic (in the uniform
and weak operator topologies).

Since, uch GT*<:sch GT*C wch GT* , one concludes that schGT*has
a zero element, i.e.T” is strongly ergodic.

2.10. COROLLARY. If TelL(H) is ergodic, then F(T) is ergodic, for
every analytic multiplicative function F, on the spectrum o(T) of T.

Proof. It is not difficult to show that a multiplication analytic
function is one-to-one, onto, and continuous. (see Remark 2.11).By
the Theorem,* F(T) is ergodic.

2.11. REMARK. If F(z) is analytic, where z is a complex variable,
then

F(z)= % anz” and F(z) F(z) = F(zz), thus

iy, 8. N ©  _2Z2n
T b = 3
( ¢ %n? )(oanz ) 6%n?

1 for some n . n
and this is true if a = { and thus F(z)=z ',
J otherwise
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2.12. REMARK. Corollary 2.!Cand the preceding remark imply that if
T is ergodic then ™ is ergodic for every positive integer n and
thus every element in the cyclic semi-group GT is ergodic.

For a subnormal operator T, let N be the minimal normal eiten-
sion of T (whichis urique up to unitary equivalence, see Halmos
(2], problem 155, page 101). Conway [1]showed that N can be writ-
ten as a two-by-two matrix with operator entries.

No T A* ,
0 S
where Ne L(K), N is normal and K is a Hilbert space such that K=HOHl.

If the decomposition K=H10H is considered then the adjoint N*of N

is given by
* S A*
N =
0 T*

The operator T is said to-be pure subnormal if T is subnormal
and neither A nor T is normal. Olin( [4) Lemma 5.3) has observed
that T is pure subnormal if, and only if, N*is the minimal normal
extension of S, and S is called the dual of T.

2.13. COROLLARY. Let T eL(H) be an ergodic subnormal operator. If
N is the (unique) minimal extension of T, then N is ergodic.

Proof. If f is an analytic function, then it is broved in Conway
[1] that f(N) is the minimal normal extension of f(T). Using the
decomposition mentioned above,

[f(T) Y ]
F(N)=
0 £(S*)

where N is defined on H @ Hl

Inparticular let f be multiplicative and analytic and s0, by:rema:
2.11, f(z)= 2", for some -n. Define the multlpllc&t 'e '
function F: GT - Q& bg F(T“):Nﬂ' hg~the precedi
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the minimal normal extension of Tn, f is one-to-one and onto. By
the theorem, N=F(T) is ergodic.

2.14. REMARK. Since N is unique, by symmetry the proof of Corallary
2.13 implies that if N is ergodic then T is also.

Finally, we arrive at the following result concerning the dual of
a pure subnormal operator.

2.15. COROLLARY. If TeL(H) its a pure subnormal operator, and if S
is the dual of T, then T is ergodic if and only if S is ergodic.

Proof. Let N be the minimal normal extension of T, then (by O-
lin's result [4] ) the adjoint N is the minimal normal extension
of the dual S of T if, and only if, T is pure. Thus if T is ergo-
dic then by corollary 2.13, N is also ergodic. By Corollary 2.9 N*
is ergodic, and by Remark 2.14, S is ergodic. By the symmetry of
the proof we have if S is ergodic then T is ergodic too.

0ZET

Bu calismada asagdidaki teorem kanitlanmistir.

TEOREM. T, bir sonsuz boyutlu karmagik Hilbert uzay:i izerinde
{dizgiin, kuvvetli veya zayi1f operatdér topolojisine gére), bir er-
godik operatdr ve F ¢arpimsal siurekli bir fonksiyon ise ayn1 topo-
iojiye gore F(T)} ergodiktir. Boylece herhangi bir terslenebilir S
operatori icin STS—I’ergodiktir; T nin Theki ergodiktir., T alt nor-
mal ise T nin minimal normal geniglemesi N ergodiktir. Ustelik, bir
pir alt normal T uperatoriniin S duali ergodiktir.
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ON THE COEFFICIENTS
OF CERTAIN MEROMORPHIC FUNTIONS

0. AIt1nta§(1)

The aim of this work is to obtain the sharp bounds for
the coefficients of the functions belonging to the class of
meromorphic functions which are analytic in 0<|z|<1.

Key words: Analytic function, Meromorphic function, Starlike
function of order a .

1980 Subject Classification: 30D30

1. INTRODUCTION

An analytic function
g(z)=—€;+b1z+b222+...
is said to be starlike of ordera ,(Oga<?) in the punctured disc
K={z:0<|z| <1} if and only if

Re {M }>a
a(z)

for all z in the unit disc E={z:|z|<1}.
Let Fu be the class of. functions

1 2
f(z)= — +84Z43,2 +. .-

which are analytic in K and satify the condition
zf'(2) + |<I U z2f ' (2)

a(z) 9(z) -1 l’ (Ogugl),zek . (1.1)

(1) Hacettepe Univ, Fac. of Sci., Math. Dept., Ankara. TURKEY.
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where
2

i
g(z)= —~ byz+byz™ +. ..
is analytic and starlike of order « in K.

Owa [3] has obtained some coefficient relations for the class F,
taking

= n
f(z)=z Z.a.z
(z)=z+ Eodn

analytic in the unit disc €,

g(z)=z-n@=5:°2 b.z" , (b,30)

analytic and starlike of order «in E.

A special subclass of F, was studied by Kaczmarkski [1].
Pommerenke [4] has obtained the relation

2(1-o) )
lbnlsT , o on=1.2, . e (1.2)

for the meromorphic function

1 . 2
g(z)= - +b1z+b22 + ...

which is starlike of order o« in K.
In this paper, using this result we obtain the coefficients re-

lation for the class Fu-

2. RESULT

2.1. THEOREM. If f(z)eF and Re a b, 30 for k=1,2,3,..-(n-2) then

2(1-a)

n ]an|s1+u+ e

,nzl.

The bounds are sharp.

Proof: Since f(z)eFu we obtain
zfg(;) = w(z) [U Zfé(;) 4| -2
where w(Z)=C222+C3z3 +... and |w(z)] <t in E. On substituting the
the power series for f(z), g(z) and w(z) in (2.1) we have
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@ k 1+U © k
21 (kak+bk)z =[:- > + k§1 (u k ak—bk)z ‘l_w(z)

@ k+1 @ k+1
K21 (kak+bk)z e [—(1+u)+ K21 {u k ak-bk)z * j]w(z)...(Z.Z)
Equating coefficients of 22 and 23 on both sides of (2.2)
we get
a1+b1 =,—(1+u)C2,
and

2a,+b,, = -(1+u)C3.

Using |62|s1, |C3|s1 and from (1.2) we obtain
la,lslagb,l + |b, s tust-a  ...(2.3)
. and
2(1-
2Jaylcleaytb, | + fo,lsteur  2US) (a4

Equating the coefficients of 2" (n>2) on both sides of (2.2) we get

nan+bn = -(1+u)Cn+1+(ua1-b1)C +

n-1

e +L u(n-2)an'_2—bn_2 ]C2 . ...(2.5)

From (2.2) and (2.5) we obtain

1 ® k+1
1 (kak+bk)zk+ + K£n+1 (kak+bk)z T

e

k

n .
=[ -(1+u)+ kz1 (u k a,-b

K+1-.
L KPIz

@ k
w(z) + kEn42 dkz "'(2f6)

; ® k+1 ® : K
Since 2., (ka+b )z = Znep Lk-T)a b 41z

and 1rom (2.6) we have

K+1 ° K

G kaab 2T B e
A SR o
_-(1+u;+k;:,1 {u k ak—bk)z oW (). ... (2.7).
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Using|w(z)|<1 in E and Parseval identity(l2],p:100) on both sides
of (2.7) we abtein

.2 2(k+1)

n @ 2 2
K2y lkab s T tdme 180T e

2k < (1+u)” +

12 2kl o8

n-2
f k£1l u k ak-bk

If we let r —>1, from (2.8) we have

n b 12 (a2 2 2
(Eq lkaab [T () 4z [ u kg ] 20 Ll (2.9)
or
2 N2 2.2 n-2 -
lnan+an5 (140)° -2, (1-u)k Iakl -y 2k(1+u)Re a b,
“ln-1)a_ 4b_ |2 (2.10)
n-1""n-1 ot -

Since ogugt and Re akﬁk >0 (k=1,2,...(n-2) it follows that

| nan+bn|,51+u'. oo {2.11)
From (1.2) and (2.11) we have

. 2(1-a) _
nla lgina +b [ +]b | & T+u+ —o=r . n=3,4,5,.. ... (2.12)

Hence from (2.3), (2.4) and (2.12) we obtain

2(1- o) _
nlagl<t+ue —o= for n=1,2,3,...

Now let us show that the bounds are sharp.

We take .
zf'(z) _ (™
T alz) P
and
i 2(1-a)
glz) < b ™) S

Sihee Re | ~—6%E%ii}/a ,glz) 1s meromorphic
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starlike of order «in K and

zf'(z) +1 n+1
~g(z) =z <1,
Uzt (z) 1
g(z)
1t follows that f(z)e FU.
On the other hand ,
n+1 2(1-a)
2t (z)= S M) e
1-uz"t z
has the expansion
) _ 1 2(1—&) n
z2f'(z)=- 5 - (1+u+ — T y oz -
and we have
- 2(1-a)
n]an|_ 1+u+<———ﬁIT——
Hence the proof is complete.
0ZET
g(z):% +b1z+b222 + ... fonksiyonu K={ z:0<|z]| <1} kiimesinde

a-mertebeden y1ldizil olmak lzere, E={ z:|z|<1} de

|_Z;_£%L 1 |<|u.2f—é%% 1] (0gugh)

kosulunu gergekleyen ve K da analitik olan
1 2
f(z)=5 + a,z+a,2" + ...

fonksiyonlarinin ailesini FU ile gosterelim. Bu calismada Fu aile-
sine ait olan f(z) fonksiyonlarinin katsayilari ile ilgili

2{1-a)

n <1+u+
Ian s n+1

bigiminde kesin sinirin varlig: gosterilmistir.
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A CHARACTERIZATION OF UNITS IN ZS4

A. Yllmaz(l)

In this work we characterize the units in the integral
group ring 2S5, by using their images in certain general linear
groups under the distinct inequivalent irreducible Tephe-
sentations of the group S, . The group of units in ZS, aof a-
ugmentation 1 is shown to be isomorphic with a certain
subgroup. of GL(2,Z)®GL(3,Z)®GL(3,Z) ’ ’

Key words: Group, Ring, Representation, Unit, Charaétef
: 1980 Subject Classification: 16AZ6

1. INTRODUCTION

t
Let U(ZG) denote the group of units of the integral group ring

1G of a group G over the ring Z of integers. Hughes and Pearson
[4]and Allen and Hobby[ 1] gave characterizations of U(ZS3) and
U(ZA4), respectively. Milies [3]did the same for U(ZD4). Dennis
[6]1 and Sehgal [5] pointed to the need for additional work with
some small groups, including determination of the units of the ra-
tional group ring GG. In this article we restrict ourselves to in-
tegral group rin@s'and obtain a characterization of U(ZS4), where
54 is the symmetric group.of degree 4. ,

tet V(ZG) denote the units za;g; in ZG which have coefficient sum
zai=1. The technique used by Hughes and Pearson consists of making
use of the distinct irreducible inequivalent representations of 53
to obtain a 6x6 matrix P that describes a faithful representation.

(1) Hacettepe University, Faculty of Science, Ankara, TURKEY .
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8 'V(ZS3) e(V(ZS3))C:GL(2,Z).

When r:EaigieZS3, the entries of 6(r) are obtained from the matrix
product aP=8, whereaz[alaz...aGJIS the row-matrix of coefficients of

r. Finally, by computing the inverse matrix P'1 and solving the linear

system of congruences obtained by requiring that a=BP—1 have entries
in Z, they obtained necessary and sufficient conditions that describe
the matrices in GL(2,Z) which belong to e(V(ZS3)).

2, RESULT

Just following this method, we use the inequivalent irreducible
representations of the group S4 to find conditions determining the
elements of U(ZS4). The group 84 can be generated by the cycles a=(12)
and b=(234) which are subject to the relations

d = _(1) and ab2 (ba)3
We agree always to list the elements of 54 in accordance with the

conjugate clas~es 1n the following order:

[(1)=g, | (12)-a =g;1  [(123)=bab% g4 )
(13)=b b2 g, (124)=b%ba =g,
(14)=b ab =9y (134)=aba =910
2
(23)= abab a =05 (234)=b =914
(24)=ab’aba =g (132)=abad”® =g,
(33)-ab%abab® =g, (142)=ab’ab =g,
- (143)=ab%a =g,
L(243)=b2 “91s
(1234)=ab_— =94¢) (12)(34)=(bab)® =g,y
(1243)=ab " =gy (13)(24)=(ab)° =g,
(1324)=bab =G4y (14)(23)=(ab?)? =g,
(1432)b% =g,
(1342)=bg ) =450
(1423)=b%ab® =g,
L

The group 54 has five inequivalent irreducible representations

‘n
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Py>Pp P3Py and Pg of degrees 1,1,2,3 and 3, respectively; Py being
the 1-representation and Py the representation assigning to each

cycle its sign. For ease of computation we choose the representations
P3:Py s and Pg slightly different fromthose arising naturally from

Young diagrams:

91('3) =1 P‘|(b) =1
Pz(a) = -1 pz(b) =1
0 -1
(o) = A =[] ] p3(b) = B - E _J
[0 1 0
. Jo 0 i p,(b) =D = |0 0 1
94(3) =C —]VO -1 ({] 4 u 0 0
1 0 0 -
0 1 0
To 0 -T ps(b) =D = |0 0 1
p5(a)=-C= Lo 1 OJ il 0 0
-1 0 0

Let p1®p20p3®p4®p5 denote the direct sum of the irreducible
representations of 54. When geSA, p(g)=X* is a 10x10 matrix with
blocks on the main diagonal as follows:

X, ]
*2 B \|
Xo X Kl
X = 5 6 = X (2.1)
X7 Xg Xg 2 ,
X10 *11 %12 Q 3
*13 X14 %15 A i
16 %17 18
X19 X20 *21
] X22 723 *24
, .
— —
We use K‘xl’xz and x3 to denote, reqpectively, the diagonal
matrl- with X Xo ol the main dramals the 2x2 mdiia who e ent -
ries ogre xq,x4,x5.~u; the 3x3 mdalt ia wilbse entries are x7,x8,...,

‘a
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X, and the 3x3 matrix whose entries are x

15 16° X177+ X4~

The products in S will be computed by cycling from the right;
e, g (12)(134) (1342) Select the elements g 554 in the given or-
der and let Xy denote the 24-dimensional row-vector corresponding
1o p(gi). The components of X; constitute the ith row of the follo-

wing 24x24 matrix:

F 11001100010001100010001]| (1)
1-101100010-1010000-1010-100| (12)
1-11-10-1-10000101010000-10-10]| (13)
1-1-10-1101010000-10-10-100001]| (14)
1-1-10-110-10-10000-101010000 1| (23)
1-11-10-1-10000-10-10100001010[ (24)
1-1011000-10-10-100001010100| (34)
11-11-1000-11000-1000-11000-10] (123)
110-11-10-10001-1000-10001-100]| (124)
11-11-10001-1000-10001-1000-10] (134)
P=111011-1010001100010001100]| (238).(2.2)
110-11-101000-1-10001000-1-1 00| (132)
11111000-1-10001000-1-1000 10| (142)
11101 1-10-1000-11000-1000-1100{ (143)
11-11-100011000100011000 10| (243)
"MZ1110-110000-1010-1000010-10] (1234)
1411 0-11010-1000010-1010000-1| (1243)
1-1011000-10107T000010-10-100| (1324)
11 1-10-11000010-10-10000-1010| (1432
1-1-1 0-1 1.0-101 000010 10-10000-1] (1342)
1-10110001010-10000-10-10100] (1423)
1171001-10001000-1-1000 100 0-1] (12)(34)
1410011000-1000-11000-1000-1] (13)(24)
111001-1000-10001-1000-1000 1] (14)(23)

The direct sum representation pcan be extended by linearity to
a Z-algebra homomorphism efrom ZS4 1nto a Z-algebra of 10x10 mat-
rices of the fomgiven in (2.1).Letp(x" )=(py(x* ), P,(8* )Py (x*))=
(X1, 25 3) be the natural projection mapping X to the matrlces
X1,X2 X3 The composite map obtained by applying §and then p is
a Z-algebra homomorphism sending ZS4 into the Z-algebra of triples
of 2x2, 3x3 and 3x3 matrices. We lel 0 denote the restriction of
thiv hap po p toV(ZSA). fhenoiv a homomorphism of V(ZS4) into the
qroup Li(2.2)e6l(3,2)861 (53,2).

The hohomorph1sm ecan be described in terms of the matrix P as
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follows: o1

Leta:[a1a2...a24] represent the element r=i§1 ;95 where the
supporting elements g; are listed as mentioned before. It follows
that the matrix product aP=x* gives the row-vector x* associated
with 3(r)=X*. Then 8(r)=P(x*). The image of V(ZS,) under econsists
of the elements (X1,X2,X3) of GL(2,2) @ GL(3,Z) @ GL{3,Z) which are
projections of those matrices X* such that aP=x* where 4is the row-
vector of coefficients of some reV(ZS4). Thus, once P'1 is known,
we can say that the range of e is contained in the set of all (X1,
Xp.Xg) in 6L(2,Z) @ GL(3,Z) @ GL(3,Z) such that x*71 is a row-
vector of integers whose sum is 1.

The matrix P can be inverted using Schur relations, as mentioned
in [1,2]1. We list the steps of this inversion process for the sake
of completeness. (pk'S are the irreducible representations of 54 )

(1) Determine the fixed i,j and k such that the mth column of P
consists of {pk(g)ijl geSy ¥ -

(2) Once i,j and k are known, select the column of P; say the
mth column, which consists of {pk(g)jil ges,} .

(3) Rearrange the mttﬁ column by interchanging the entries for
Py (g)ji and e (g—1)ji . Then multiply each entry by nk/24 where
M is the degree of P -

(4) Transpose the result of step (3) to obtain the mth row of
-1
P,



o
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~—

I
TTNOONMOOOMOOOMMOOOMOOOMm

112002300030003300030003

1«12002300030003300030004

[}

112022300003030300003030

1122200%0003300030003300
11022200330P030003300030

112220030003300030003300
112220030003300030003300
110222003300030003300030
1.1.9h9h?unvﬁvﬁdﬁuﬂuﬂuQu?unvnvnv1unvnvnququnvnv

T NOOMNMODODOMOODOMMOOOMODOoOOMm

L

-

1

~34qtdyy
+a23+a244

)

. a2~a3-a6+a7+a8—a9+a10—a1

5
2

"392%31378y* 5"t g

"3147816%817721g%0 )

81-23%3,%a5-36-3g-24 43y,

.+a

-a +ag+
- 7 8 LY
seem8p HAystasat

-62-..
g16'

i
-

.+824
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This leads to the following matrix:

p~12(1/24)

Since the matrix P is invertible, the Z-algebra homomorphism 7

is an isomorphism. The blocks of the matrix X* in (2.1) are

!‘:51+a2+. .

K=

[[a4+a3-24-a5+ag-2g-2,9-2 4

B LR TR VAL L R MY S LAY

3y-3,-3g+2;-8g+ag-2, 0+ 2y,

8431244784573yt g-dygta,,

F
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417937%*%6 7957%g%yy | 927377%8% 0 (2.4)
*9197922%9237%24) *2127%14%9177%0 . T%13%9157%18%2)

- a4-a5+a8-a10 a1-a2-a7+a18 a3-a6+a9+a11

o h3tsIhirte0| PartiaeTt23 e, P12i%147 16 %9
dp-dy-dgtayy d3-dg-8g-a4y § d1-d4-dgtayy

"%12t14%0g7%21 | Y813 5% 306719 | 92079227 %23%2

a1+a3+a6-a16 -a4+a5-a9+a11 -a2+a7-a8+a10

T849mapptangtdpy | ¥84p7d44m84y%ang dqgtagtd gdny

) -54+65+68—a10 a1+32+a7-a18 * —a3+a6+a9+a11
3 |-ay3%8y5t2y7m8y '321+322'323'624j -3127814%81673 19

-a2+a7-a9+a11 —a3+a6—a8-a10
"%12%214731g% 921 17943%9157 %67 g

a1+a4+a5—a17

“8207%227%23%4 |

. * 5
Consider a vector x =[ x1,x2,.f.,x24 J. The vector [31,32..,32€J
whose image under @is x* will be computed from the product x* P,
Foreachofaitobeaninteger,thesystemx*P'1EO(mod24)mustbeSolvem
We list some properties of the matrices X1,X2 and X3 which can be

drawn from the forms of these matrices (2.4},

X, X X X X X X X
3 %4 %7 %8 Yo ., %6 17 *18
For X,= [;5 xé} v X = Xy 11 Xyg s X3= 19 X0 %a
2 13 %14 %15 X2 %23 %o4
we have

(a) in X1: X3+XgEX p+Xe (mod 3)
(b) in XZ: X24X g X 3ZXg Xy 14X 0 SXgHX 54X g (mod 2)
in X3: x16+x19+x22£x17+x20+x235x18+x21+x24(m0d 2)
(c) the corresponding entries of X2 and X3 are congruent (mod 2):
{mod 2): x {mod 2) ; ... : A (mod 2)

x7:x 8:X17 X15:X2

lodescribe sone other relationt Lesworer the malrices X3 i X,
'

16

we defne the fuilowingsums and products:
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by o= XX 4Xyg Ly = XgXy X5

L2 = Xgt 243 T, = XgXyoX

t3 =-x9+x1o—x14 _2,- 8712713

Yy = Xg=Xq4+Xy3 (T3 = XgXygXyy

lg = XgtXy9-X4g T 2oXoX, . X

1o =-X34X,o+X 4 7 79711713
6 ="X7tX12t%14 = o

b5 = XgX10%15
Ly ="X7X40%qy

Ty = X4 *Xpq tXo4 By = XygXo0%24
| _ Fyo_

Ly ==Xy +Xpq X5y L = Xy7%01%X02
v - T

3 ="X1g 49 "X23 13 = X4g%19%23

Ty = X4g “Xpq tXpp Yy =-X1g¥p0%22
[ o

tg = X473 yg Xpq Ty =Xy7%19%9q
| Fro-_

te =15 ™21 P23 Y6 ="X16%21%23 .

In terms of these tk and té s we have thefollowing relations
between X2 and X3: {k=1,...,6)

(d) Let X and xj be any'two elements of X2 belonging to tk and
let x{ and x; be the corresponding elements of X in fk. Then
i ] 1 1 [3 ]
(a )Ifxi,xj(respxi,xj)belongtot1,t2 ort3(resp.ti,t20rt3)then

xi+ij-U;+xj)(mod 4) and xi-xj54x{ij) {mod 4)

(b') If Xi’xj (resp. xi,xi) belong to ty.tg Or tg (resp.t&,té

or té) then
=yl gyt X . =yl oyt .
xi+xj-xi+xj {mod 4)4and X; Xj X xjr(mod 4)

We know that for a vector x* to belong to¢a(V(ZS4)) a necessary
and sufficient condition is that the vector x* satisfy the congru-
ences x* S (mod 24). This gives 24 equations represented by
the matrix equality [a;,a,,....a5,1= x*P7' for calculating the

integers al,az,...,aza.

Summing up these equations we see that Z§j1ai= 24x1/24=x1,
from which we derive the conclusion that the first component Xy of

the vector x* must be chosen to be 1. Because the diagonal entries
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of the matrix K must be units, the second component X5 of ¥ will
be chosen to be + 1. Hence the pair (x ;X,) must be (1,1) or (1,-1).
R T th ot
For these ChOlceS of (xy,x,) the sth gth, 780 4oth 14th 4
23rd and 24 of the congruences x* P 1zo(mod 24) will not be af-

fected; 1St, an, 3rd, 4th, Bth and 9th of these congruences will

have the following forms in terms of the sums t and ti.(k=1,...,6l
For  (xy,x5)=(1,1) For (xq,x5)=(1,-1)

2(1+x3+x6) +3(t +ti): (mod24) 2(x3+x6) +3(t +t1)_0(m0d24)
2(x4+x5) +3(t4-t4)" " 2(1+x+x5)+(t4-t&) =g "
2(x3-x5-x6) +3(t6 6)_O 2(1+x3-x5—x6)+3(t6—té):0

(2.5).. 2(—x3—x4+x6)+3(t5-t5')50 u 2(1-x3-x4+x6)+3(t5-té)50 "
2(1+x4-x5-x6)+3(t3+té)50 " , 2(x4—x5—x6) +3(t3+té) =0
2(1-x3-x4+x5)+3(t2+t2')50 " 2(-x3—x4+x5)+3(t2+té) =0 v

To derive further properties of matrices X2 and X3 we consider
the sums ti of X2(similar1y for X3).
From the form of X, in (2.4) we write the sums:

14=384-85-83-8)~85~85-a,48 g3 748 g+8g+a50+8 ) "855=89378 5y

2“52+a3‘a4*35 dgtaz+3ag-ay1-ayymdy4-aygmay7731g+a g+ sy
T9=-8p-a3+a-ag+agta;+33g-2-8 3-8 57353731 g*a g+ p0=d)
Keeping in mind that a1+...+a24=1, we see that t1+t2+t3+1 =0(mod 2)
and that the sum t +t2+t3 is an odd integer. Similarly, the sums

+t5+t6, t) +t.2 3 and t; +t5+t6 are odd. Accordingly, we can list
the following properties:

(1) Since tizt; (mod 2), either all of the sums t1,t2,t3 are
odd, or one is odd and the other two are even, and similarly for
the sums t t2 t3 ; t4 5 t6’ A,té,té.

(2) For at least one tl(resp.ti) all three numbers belonging to
ti(resp.t{) are odd; otherwise, all six products fi being even, the
determinant of X,=T,+...4Tc would be#+1.

(3) For at most one ti(resp.t{) all three numbers are odd. Ot-

herwise det(XZ),(resp. det(X3)) would be even.
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Accordingly, for the matrices Xo and X5, for exactly one t, all
three numbers belonging to these ti,t{ are odd, the remaining
elements of these matrices are even.

(4) 1f the odd entries of X5 and X3 belong to t and t; then

1
at least one of the entries on t2,t3(té,té) must be divisible by 4.

The projections of e(V(ZS4)) under Py.PysP3 are, respectively,

S %
§

Xo+Xp = X,4X {mod 3)]>CGL(2,Z)
X5 X6 377574776 J

j X3 Xg o Xg column sums are congruent (mod 2)!

> X10 X111 X2 and exactly one ti contains odd ;=GL(Z,3)
_x13 SVERST: entries; the other entries all
being even.
G3CGL(3,Z) defined similarly for GZ'
Now let G=G

| 8 62 @ G3
= { (Xl,XZ,XB)gGL(Z,Z) ® GL(3,Z) @ GL(3,2) XI’XZ’XB
satisfy conditions (a)-(d) and (2.5) 1}.
Then G is a group containing e{V(ZS,)) and we can characterize the
group of units under consideration as follows:

2.1. PROPOSITION. e(V(ZS4))§G.

Proof. The only thing we need to show is that e :V(ZS,) -—>G
is an isomorphism and that the inclusion e(v(ZS4))CG is an equ -
ality. Let I2 and 13 denote identity matrices of order 2 and 3,
resp. and K the diagonal matrix with entries XpXpe Consider the

matrix
K
X" "2 |
3]
'1
If we 2hoo- P dher than 1. 1;; that is,1f (xl.xq)z(l,-l).
then we get trom the product A*P’l, viitries other than integers;

l

e.g. the first four entries of x*P™ " are 11/12, 1/12, 1/12 and 1/12.
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Therefore, the natural projection p restricted to E(V(Zsa)) has
trivial kernel.Since p is already an isomorphism, it follows that
6 iS an isomorphism.

Finally, we show that eis onto by observing that [ag,.. 85,1
P! has integer entries. Choose (X,,X,,X3)eG. From the forms of
the blocks in (2.4) we obtain, by a long computation, the congru-
ence

det(x1)=x3x6-x4x5 Ex1x2 (mod 3) = Xo (mod 3)

from which we determine the second entry of K to be x2=det(X1LNow
weusethechoice(x1,x2L41,det(X1)) together with the entries
of X1,X2,X3 to determine the vector x*= [x1,...,x24]=[1, detx1,x3
sesesXop Jand find the vector of coefficients = [a1,...,a24 ] for
. an element r=1a,9; in V(ZS4) which satisfies the equality oP=x*.
That the coefficients 3,,3,,35,3,,3 and ag are integers follows
from the conditions (2.5) and that the remaining coefficients are
integers from conditions (a), (b), (c), (d).

Example. We observe that the triple

4 -30 33 -52 -30 -21
_,[46 -19])}6 51 -58 -6 -3 -2
(Xq,Xp,%3)= ([;63 2é],-3 22 28] , |57 -3 -20])
belongs to the group G described above. Because det (X1)=-1 we ma-
ke the choice (x1,x2)= {1,-1) and form the vector :
x*=[1,-1,46,-19,-63,26,4,-30,33,-6,51,-58,-3,22,-24,-52,-30,-21,
» ) -6,-3,-2,-57,-34,-24],
Now the product % P gives the vector
«=[0,0,0,0,0,0,-27,0,0,6,-30,0,0,0,0,28,0,0,0,0524,0,0 1
‘With non-zero entries a7=-27,a10=6,a11:-3O,a16=28, a22=24

and a1+...+a24=1.Hence the group ring element

r=d;97%240999%311911%2469167922922
=-27(34)+6(134)-30(234)+28(1234)+24(12) (34)e2S,

is a unit with inverse r'1eZS4 determined by a'1=(x*)'1P—1; where
(x*)'1 is a vector obtained by using 1, detX1 and the entries of
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. -1 -1 -1 .
the matrices X1 s X2 , X3 . Since

1 1 1 -26 -19 52 g 37 -4 6 3
(X7, %5, %5 0) =( 30 4 30-51-22 )
1 2°"3 -63 -461 , |21 2 24 | , 133 58 24

and det(X;1)=—1,we again make the choice (X1,X2)=(1,—1) and form
(x*)—1=[1,—1,—26,-19,—63,-46,52,6,57,30,3,34,21,2,24,-4,6,3,30

-51,-22,-33,58,241].

Accordingly,

m—1=(x*)—1P-1 =[0,0,0,0,0,0,-27,0,0,0,0,0,0,~6,30,0,0,0,
28,0,0,-24,0,0]

with non-zero elements a7=-27;a14=—6;a15=30;a19=28;a22=-24,

and the desired inverse element r~

L is obtained as

-1
T =37974344944%78 159153 199491302900
=_27(34)-6(143)+30(243)+28(1432)-24(12)(34).

OZET

Bu ¢al1smada ZS4 grup halkasininbirimselleri, 54 grubunun farkli

denk olmayan indirgenemez representasyonlari altindaki muayyen genel

lineer gruplar icindeki gorinumleri kullanilarak karakterize edilmis

olup, ZS4 de ogmentasyonu 1 olan birimseller grubunun GL(2,Z) ®
GL(3,Z) ® GL(3,Z) ninbir alt grubuna izomorf oldugu gésterilmistir.
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A NOTE ON FUZZY NEARLY COMPACT SPACES

This paper discusses fuzzy near compactness in fuzzy to-
pological spaces. We give some characterizations of fuzzy
near compactness in terms of regular open and regular closed
fuzzy sets.
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1. INTRODUCTION

Zadeh in [8] introduced the fundamental concept of a fuzzy set.
Fuzzy topological spaces were first introduced in the literature
by Chang [2] , who studied several basic concepts including fuzzy
continuous maps and compactness. In this paper we study fuzzy nearly
compact spaces. We give some characterizations of near compactnes
in terms of regular open or regular closed fuzzy sets. We first
give some necessary preliminaries.

Let X be a nonempty set and F(X)={f]f:X >{0,1]} . The elements
of F(X) are called fuzzy subsets of X[8] . We denote by 0x and
1X the functions on X identically equal to 0 and 1 respectively.

Now we recall that a fuzzy topology in the sense of Chang {2]
is a subset t, of I" such that

(i) OXETX and 1xsrx ,

(1) Hacettepe Univ.Fac.of Science, Mathematics Dept ., Ankara,TURKEY
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(ii) If f,getx, then ngerx,

(iii) If fie&,-v-iel, then i;\:(l flarx.
A collection {fi} iel where fje&, iel, is a cover of X iff

iglfiﬂx‘ A fuzzy topological space is compact iff every open co-

ver has a finite subcover [2] .

tet X be a fuzzy topologicgl space. For a fuzzy set of X, the clo-

sure T and the interior f of f are defined respectively as

f=inf {g:g>f.gler 1}
and
0
f=sup{ g:g<f, get, }.
A fuzzy set f is called regularly open iff f=(£)°

o and regularly
closed iff f=(f) [17.

A fuzzy topological space X is almost compact iff every open
cover has a finite subcollection whose closures cover X{ 3]. A
fuzzy topological space X is called nearly compact iff every open
cover of X has a finite subcollection such that the interiors of
theclosures of fuzzy sets in this collection covers X[ 41.

If 1, is a fuzzy topology on X, a collection Bgtxis a base of
rxiff each fetx is of the form iglfi’ where fieB,Vi; and its mem-
bers are called the "basic open sets of the topology rx". A col-

lection Ser, isasubbase iff {f. A ...af } fjeS is a base of 1,
1 n

2. RESULTS
The following theorem shows that we may work with fuzzy regularly

closed or fuzzy regularly open sets:

2.1. THEOREM. In a fuzzy topological space X with base B the fol-
lowing conditions are equivalent:

(i) X is nearly compact.
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(ii) Every basic fuzzy open cover of X has a finite sub¢ollec-
tion such that the interiors of closures of fuzzy sets in this
subcollection covers X.

(iii) Every cover of X by fuzzy regularly open sets has a finite
subcover.

(IV) Every collection of fuzzy regularly closed sets having the
finite intersection property has nonempty intersection.

(V) Every collection {fi} iel of fuzzy closed sets having the
property that cgr any finite subcollection { fi: i=1,...,n} of
(LFS R i21(fi)'¥ox, has nonempty intersection.

Proof. (i==>ii) follows easily.

(ii=>iii). Let {fi} iel be any fuzzy regularly open co-

ver of X and let B be a base for Ty For each iel,

fi= v {gj:jeli, gjeB} . Then A= {gj: JEIi, iel} is a basic open

cover of X. By(ii), A has a finite subcollection {gk:k=1,...,n }

n .
such that k!1 (§kP =1X. Now for each k=1,2,...,n there exists a
- .0 o}
fke A such that gks,fk. Therefore we have (gk) gﬁfk) =fk and
n
Wy ity

(iii =>1iv). Let {g;} el be a collection of fuzzy regularly
closed sets with the finite intersection property and suppose that

jAp 910~ Then {1-g;} ;  is a collection of fuzzy regularly

open sets with the finite intersection property and by assumption
there existsa finite subset Fgl such that igF (1-gi)=1x. This
implies iéngzox’ which is a contradiction. Hence iM gifox.

{iv =>v) . Let {gi}iel be a collection of fuzzy closed sets
having the given property. Then {(81)-} iel is a family of fuzzy

regularly closed fuzzy sets having the finite intersection property.

o _ o _
By (iv), jaq (g;) #0 . But, from (g;) <g; we have i g;#0, .
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(v =>i). Let {fi}iEI be a fuzzy open cover of X.

If Ve (Fl.)O does not cover X for every finite subcollection
{f;1

0,- .
e > then AL ((1-fi) ) fox. By (v), i (1-fi)#ox, i.e.

igl (1-(1-fi))#1X and hence the contradiction iV fi#1x.
Obviously every nearly compact fuzzy topology is almost compact.

The reverse implication does not hold in general:

2.2. EXAMPLE. Now let X={a,b,c,d} and Ty be the fuzzy topology
with subbase

(F09 0 akps n=1,2,3,... )
where

1 1
fala)=1- 5, Folb)=t- &, fo (o)

S g
.
-
—
a
-
W
ry
]
Sl—

ko(@)= &, k(b= 5, k (c)=0 , K (d)=0,

S| —

hy(a)=0, h(b)=0, i (c)=5 , h (d)=,

gn(a)=1—-% » 9p(b)= % ’ gn(c)=1"% > gy (d)=1- % .

Then (X,TX) is almost compact but not nearly compact.

2.3. REMARK. This example may'also be used to show that one cannot
-replace "base" by "subbase" in Theorem 2.1, (ii). For consider the
subbase {pn,qn,rn,hn,kn:n=1,2,.... } where

Po= (V (Fo00.)) ¥ £,

U= (W (Fragp)) Vo,

rn=frVe, -

For this family B the condition (ii) of Theorem 2.1 is satisfied
- 0 -~ .0 ,- .0
since (Pn) =(qn) = (rn) =1x. However as we have noted this fuzzy
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topological space is not nearly fuzzy compact.

Recall thet a fuzzy space (X,rx) is called a fuzzy semiregular
space iff the collection of all fuzzy regularly open sets of X forms
a base for the fuzzy topology rx[ 11.

2.4. THEOREM. A nearly compact semiregular fuzzy topological space
X is compact.

Proof. Let {fi}iEI be an open cover of X, that is ¥ fi=1r
Since X is semiregular, fi=j¥I gé , where g} is a fuzzy reqularly
i
i_ . . }
open set. But, from i!l jgli gj _1X,athere exists a finite subcol
lection {gk : k=1,...,n} such that k!1 gk=1x. Now for each k=1,.
SN o tRere exisﬁ! a fk in {fi} fel such that gk-ifk' Hence we

have k!1 fk=1x &s required.

2.5. COROLLARY. A fuzzy semireqular space is nearly compact iff it
is compact.

Proof. This is immediate from Theorem 2.4.

In Azad [1] some weaker forms of continuity, fuzzy semicontinuity
fuzzy almost continuity and fuzzy weak continuity, are considered
for the first time. For a fuzzy almost continuous function we have:
A fuzzy almost continuous image of an almost compact fuzzy topolo-
gical space is almost compact [3] and a fuzzy strongly continuous
image of an almost compact space is compact [4] . The same holds
for nearly compact spaces: )
2.6.COROLLARY. An almost continuous image of a fuzzy nearly compact
space is fuzzy almost compact.

2.7. COROLLARY. The image of a fuzzy nearly compact space under a
strongly continuous mapping is compact.

The proofs are similar-to the almost compact case, and areomitted.

A. Di Concilio and G. Gerla [3] studied products of fuzzy almost
compact topological spaces and proved that in general almost com-
pactness for fuzzy topological space is not product invariant,
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although if X and Y are almost compact fuzzy topological spaces
and if X is product-related to Y, then their fuzzy topological

product is almost compact. Recall that a fuzzy space X is product
related to another fuzzy space Y, if for any fuzzy set f of X and
g of Y whenever h'Af and k'}fqg implies (h'x 1)V(1 x k') >fxg, whe-
re hetx and kety, there exists hyet and k1ety such that hixf or

k'sg and (hixl)V(lxki):(hlxl)v(lxk{)[1]mere h' and k' are the

complements of h and k, respectively. If f is a fuzzy set of X, g
a fuzzy set of Y and X is product-related to Y, then ¥ x g=fxg
holds[1 ]. We omit the proof which is similar to the almost campact case.

2.8. COROLLARY. If (X,Tx),(Y, ry) are nearly campact fuzzy topo-
logical spaces and X is product-related to Y, then their fuzzy to-
pological product is nearly compact.

A product of two nearly compact fuzzy topological spaces need
not be nearly compact.

2.9. EXAMPLE. Let X be a nonempty set,

t={ fe F(X) :u>é—} Ulox}
and

= (fy e F(X) 1 B<x }U {1}

where we denote by f_ the function on X identically equal toal31].
We have that (F )%=1,, ¥ fyet, a#0. Then < is nearly compact
since every open cover of t* must contain 1x and then also ¢*is
nearly compact. Their standard product is |{ fleF(XxX): 0 <<},
Then (%, )7=fx, L A. Thus the open cover {fy}, O<A< 1, does not

contain any finite proximate subcover.

Acknowledgment. The author would like to thank Asoc, Prof.Dr. Do-
gan Coker and Dr. Lawrance Brown for some very helpful suggestions.
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OZET

Bu ¢alismada belirtisiz topolojik uzaylarda yakin tikizlik in-

celendi. Belirtisiz yakin tikizlidin belirtisiz regiiler agik ve
regiller kapal: kiimelerle karakterizasyonu verildi.
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MATRIX BAER® - RINGS

A. HarmanC1(1)

Let Rbe a ring with involution * and R_ denote the ring
of all nxn matrices over R. We assume every prime homomorphic
image of R has proper induced involution. Under this assumption
it is proved that R_ is Baer*—ring for all n with transpose
involution if and o%ly if P:P* for all prime ideals P, the
induced involution on R/P is positive definite and R is a
semi-hereditary ring.

KeyWords:Baeﬂtrings,Semi-hereditaryrings,Ringof(wotients

1980 Subject Classification: 16428

1. INTRODUCTION

Throughout R will denote an associative ring with identity 1.
We follow the terminology of [1] in general. If R is a ring with
an involution *, we may define an involution on the nxn matrix
ring Rn’ by applying both the transpose, and the involution to
each of its entries.

1.1. DEFINITION. Let R be a ring with involution *.The involution
is positive definite if, for all finite subsets {ri}nf R,zrir: =0
implies all the r; are zero. An element r of R is said to be bounded if
there exists a positive integer k such that r*r<kl. The set of all
bounded elements is denoted by Rb; it is called the bounded subring
of R.

(1) Hacettepe University, Department of Mathematics, Ankara. TURKEY
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1.2. I.EMMA ([3]3). For a ring R with involution, for any positive
integer n, (Rn)b=(Rb)nﬂ

We record some other results which are known for the sake of
completeness.

1.3. LEMMA (;3]). Let R be any ring with positive definite invo-
lution, and let Q be its maximal right quotient ring. Suppose the
involution extends to Q. Then the involution in Q is positive
definite, Q. is Baer*-ring for all n,and R, in Baer*-ring for all
n if and only if Qb is contained in R.

1.4.LEMMA  ([2]). Let R be a ring with involution . Suppose for
all x*R, 1+xx* is invertible in R. Then for all maximal two-sided
ideals M of R, M=M™.

Proof. Assume M#M*. Since M is maximal, then the canonical mapping
from R/MiM* to R/M xR/M™ is onto. For {-1,1) in R/M x R/M* there
corresponds an xeR such that (x,x)=(-T,7) holds. This implies 1+xeM,
1-xeM*. Hence 1+x and 1-x* lie in M and so 14+xx™ =1+x-x(1-x*) is
in M. This and the invertibility of 1+x x* leads us to a contra-
diction. Thus M=M*,

2. RESULTS

InL1] ,§55, it is noted that "We are then left with the problem of
determining conditions on a finite Baer*-ring R that are suffici-
ent to ensure that Rn is a Baer*-ring. The problem is largely open".
It is proved in[1 1that Rn is Baer®-ring under severe hypothesis
but AW*-algebra case is covered. The question naturally arises,
under what conditions does the matrix ring Rn become a Baer*-ring.
This question is largely studied in ([31,[41).

Tn this note among other things, we generalize Theorem IV.5 in
[27to prime ideals.

Theorem ([2],Theorem 1V.5). Let Rbe a semi-prime Pl Goldie ring
with involution = . Then Rn is Baer*with respect to *-transpose
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for all n, if and only if
(a) P=P”™ for all primitive ideals of R
(b) The induced involution on R/P is positive definite for all
primitive ideals P
(c) R is semihereditary.

We begin with the following

2.1. LEMMA. Let R be a ring with involution*. Suppose R has a iwo
sided prime ideal P satisfying

x x*e P implies xeP (xeR).
Then P=P”.

Proof. Assume we have an xeP* and x¢P. Then for all reR,
(rx)(® r*)=(rx)(rx)*eP* and (rx){rx)*eP. Since P is prime we oOb-
tain rxeP from hypothesis, thus Rx P and so xeR. This contradiction
proves that p=p*.

We consider the following condition in rings with invelution.
(C1).. The invertibility of 1+xx* implies p=p*

2. 2. LEMMA. Let R be a ring with a positive definite involution.
Then for every xeR 1+xx* is not a zero divisor.

proof. Assume (1+xx* )t=0 for some teR. We right multiply Dy ®
and we obtain t t+(f x)(t* x)*=0. This and the positive definiteness
of involution implies t*t=0, t*x=0 which implies t=0.

2.3 PROPOSITION. Let R be a semi-prime Goldie ring with involution
and assume every prime homomorphic image of R 1Is reqular ring. If
R satisfies the following conditions

1) For each prime ideal P in R.P=P*,
2) The induced involution on R/P is positive definite.
3) R 15 seml-hereditary.

- Then R i Baer®-rina for all positive 1nteger u.

Proof. R 15 semi-prime Goldie, therefore Rn is semi-prime
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Goldie. The maximal ring Q(Rn) of quotients of R, 18 semi-simple
artinian [ 5,(2.3.7)1 , so for any subset S of Q(Rn), the right
annihilator r(S) is induced from the annihilator of an element a

in Q(Rn). Since R is semihereditary, by [ 3] R, is principally
projective, therefore r‘(S):r(a):eRn for some idempotent eeR . To
prove R a Baer* -ring it is enough to show 1+xx* is invertible
[6, Thec.261. For if K is a primitive ideal in Ry then K=P for
some primitive ideal P in R [ 7, page 711 : Sipce each primitive
ideal is prime ideal, t) and 2) imply P=P* and the induced invo-
lution on R/P is positive definite. Since (R/P)n=Rn/Pn and all

hypothesis of R are satisfied by Rn’ then Rn/Pn has positive de-
finite involution. Lemma 2.2 implies, in (R/P)n=Rn/Pn, 14xx* is
not zero divisor. Since R/P is regular, Rn/Pn is regular and therefore
T+xx* is invertible in Rn/Pn‘ Then for each xe Rn’ and for every
primitive ideal P, 1+xx* is invertible in R\/Py- Thus taxx* is
invertible in Rn which proves the proposition.

2.4. PROPOSITION. Let Rbe a semi prime Goldie ring with involution
*3nd assume every prime homomorphic image of R is von Neuman regular
and Rn is Baer*-ring with Fespect to transpose involution for all
n. If (Cl) holds for prime ideals P in R then

1) P=P* for all prime ideals P,

2) The induced involution on R/P is positive definite, 'for all
prime ideals P in R,

3) R is semi-hereditary.

Proof. SinceR is semi-prime Goldie, it has a semi-simple arti-
nian maximal ring Q(R)=Q of gquotients. Then* extends to Q and Qn
is Baer*-ring and Qi the ring of bounded elements of Q is contain-
ed in R[3).As in [2] we give a detailed proof that l4+xx*is inver-
tible in R. Since R, is Baer*ring, we take xeR and we put X=(:) S ),

and r(x):pR2 for some projection p in R2. Denote Y=("1( 8 )eR2
and then XY=0, so Yer(X) and pY=Y and Xp=0. Since R2 has transpose

involution then p must have the from (g* E) where a=a*. We use
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Xp=0 and pY=Y and we obtain a+xb*=0, -ax+b=-x. We apply the invo-
lution to the second and use the first equality toobtain a=xx*(1-a).
We add 1-a to both sides this equality and we conclude that 1+xx™
is invertible. We here invoke (Cl) to get P=P* for every prime
ideal P of R,and so 1) follows. Let P be a prime ideal of R, then
R/P has an induced involution, and since it is regular, then R/P
is a*-reqular ring [6,The0o.26] and so xX*eP implies xeP. Since
R,/P, satisfies all the hypotheses of R then xx*eP impliesxXEP_
for all prime ideals P, in R Now we prove the induced involution

of R/P is positive definite . For this it suffices to show zxixieP
implies xieP where {xr}§l241=1,2,...,t).
Set
—_ *
Xg Xy . t x’1 0.
CX= 0 0 then x*= (%2 O and
0 0 ...0 *; 0...0
*
XX 0 0
*_ 0 0 0 , *
XX = : : € Pn since zxixieP.
0 0 -+ 0

Hence XePn which implies xieP {i=1,1,...,t). It completes the proof
of 2).As for 3), R is Baer*-ring hence the right annihilator of
any subset of Rn is generated by & projection (idempotent), and
therefore Rn is,principally projective, thus{ 31 implies that R is
semihereditary.

2.5. THEOREM. Let R be a semi-prime FI Goldie ring satisfying (CI)
for all prime ideals with involution. Then Rn is Baer*-ring with
respect to the transpose involution for all n, if and only if

1) For all prime ideals P, we have P=P*,
2) The induced involution on R/P is positive definite for all
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prime ideals P
3) R is a semi-hereditary ring.

Proof. Assume Rn is a Baer*-ring for all n. As in the proof of
Proposition 2.4. 1+xx* is invertible and so (Cl) implies P=P*for
all prime ideals. Then R/P has an induced involution and satisfies
a PI. Therefore R(P has a maximal ring of quotients Q (R/P) which
is semi-simple artin and von Neuman regular. Since the involution
of R/P is exterded to Q(R/P), Q(R/P) is @ *-regular ring whicr implies
Q(R/P) is regular ring with proper involution. Assume x XeP then
X x*=x x* =0 in R/P<Q(R/P) so we have x=0 which implies xeP.

We proceed as in the proof of Proposition 2.4. to complete the
proof of 2) and 3). -

Assume 1), 2) and 3) hold. In the light of Proposition 2.3, it
1s enough to prove 1+xx* is invertible for each x in R. For if P
is a primitive ideal, P is a prime ideal hence P=P* and R/P has
induced involution and satisfies a PI. Therefore it is simple ring
by Kaplankskv's Teorem, and it is artinian, hence R/P is regular.
Thus Proposition 2.3. compietes the proof of the Theorem.

2.6. THEOREM. (et R be a ring with involution* . Suppose there

exists rinR and a polynomial g(r)ezZ{al, where Z=7(R) the center
of R, such that g(r)=0, g'(r) is right invertible (where g'(x) is
the formal derivative of g(x) )}, and the centralizer of r in R is
semi simple artinian. If R satisfies one of the following conditions:

i) R is semi-prime Goldie ring,

it) n is semi-prime Goldie and an algebra over a field,
iii) R is a PI C*-algebra,

Then R is Baer®-ring for all n if and only if

1) For all prime ideals P, P=P*

2) The induced involution on R/P 1s positive definite, for all
prime 1deal: P,

3} R is a semi-hereditary ring
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Proof. Each prime homomorphic image of R is simple artinian in
the case 1i}). In the case i) each prime image is simple artinian.
In these <cases the Theorem is clear. Case iii). R is semi-prime
algebra and the hypothesis implies that each prime homomorphic i-
mabe of R is simple artinian [B] . Hence each prime ideal P and
primitive ideal P is maximal, therefore R/P is a regular ring.Hence
the proofs of previous Propositions 2.3 and 2.4 carry over verbatim
and we complete the proof.

0ZET

‘Bu calismada involiisyonlu halkalarin matris halkalarinin Baer*
halka olmasi igin gerek ve yeter kosullar arastirildi. R halkasi-
nin matris halkalarinin Baer*-halka olmasi i¢in R semi-prime Gol-
die, her asal ideali P ig¢in P=P*, R/P pozitif definite involis-
yonlu ve R nin semi-hereditary sartlarini sadlamasinin gerek ve
yeter olacadi, R nin PI halka; R nin C%cebir olmasi durumlarinda
ispatlandi.
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SOME REMARKS ON THE COMMUTATIVITY
OF RINGS

(1)

Let R be a ring with identity. For any elements x,y in R
we consider the following relations:

i)
ii)
where
iii)
iv)
v)

In
rings

[x7,y] -[x,y" JeZ(R)

[x",y] -[x,y" JeZ(R)
m,n are ‘relatively prime integers

(xy)2 ~ xeyzeZ(R)

(xy)3 - x3y392(R)

[x3,y] - [x,y%kZ(R)
this article we prove the commutativity of semi-prime
satisfying i) and ii) or iii) or iv). v) gives the

commutativity of the ring provided that R* is 6- torsion free.

Key words: Commutativity, Gommutator, Engel condition

1980 Subject Classification: 16A70

1. INTRODUCTION

Let R be an associative ring with identity. It is proved in[3]
that if R satisfies the identities

[x"y1 = 00oy™1 . o™yl = o™

for all x,yeR and a fixed integer n>1, then R is commutative.Recently
Gupta [2] generalized this result and nroved the commutativity of

semiprime rings with identity satisfying

4

Ex"yl-CxyezR), DxX™ Ly 1-0x,y"" ezR)

(1)

Hacettepe University, Department of Mathematics, ANKARA, TURKEY
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for all x,yeRand a fixed integer n>1, where Z{R) denotes the center
of R.

2. RESULTS

Throughout this paper [ x,y 1 shall denote the commutator xy-yx
and C(R) the commutator ideal of R.

We begin with the following theorem which is a generalisation
of Theorem 3 in [2] and Theorem B in [3] .

2.1. THEOREM. Let R be a semi-prime ring with identity satisfying

(i) £x"9 -[x,yY € Z(R)
(ii) [x™,y] - [x,y™e Z(R) for all x,y in R

where m and n are relatively prime integers. Then R is commu-
tative.

Proof. We first assume that R is a prime ring. We remark that
in a prime ring R,yeZ(R),x#0 and xyeZ(R) implies xeZ(R). We replace
x by 1+x in the condition (i) and substract it from (i).We obtain
by using the previous remark

n=1 n K
(1) nlx,y3 42, () [x",yJeZ(R).

Similarly, we replace x by 1+x in the condition ii) and we obtain

m-1 n K
(2) mix,yI+ L () (X.y1eZR).

Since m and n are relatively prime, we can find integers p and q
satisfying '

(3) pn+m=1.

We use p and q in(1) and(2) respectively and we obtain

m-1t m K
(4) pn Dyl +p Iy () IXT.y1eZ(R).
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m21 m K
(5) ambx,yl+a 5 () [X7,yle Z(R).

We add(4) to(5) and we invoke(3) and fhen we obtain

(6) [x°f(x)-x,y]eZ(R).
As in [2] we replace y by yx in (6) to get

(7) [xzf(x)-x,y] xeZ(R).

If for all x and y in R[xzf(x)—x,y]=0 then it is well known that R
is commutative [ 6 ], Assume [xzf(x)-x,y]#O for some x and y in R.
Then since R is prime ring, the remark in the first paragraph of
the proof, together with (7), implies xe Z(R)}. This leads us to a
contradiction if [x2f(x)-x,y]#0. Hence for all x,y in R.

[x2F (x)-x,y 1=0
proving R to be commutative.

Assume now R is semi-prime ring. Then P(R)=0, the prime radical
of R, and if P is any prime ideal in R, then C(R)cP since R/P is
commutative as the prime homomorphic image of R. Hence C(R)cP(R)=(0)
proving R to be commutative. )

2.2.PROPOSITION. Let R be a ring with identity 1.
Assume R is a prime ring satisying the condition

(8) (xy)n-xnyneZ(R) for all x,yeR, n>1 fixed integer. Then R
has no zero divisors.

Proof. We claim first that R does not contain nilpotent elements.
For if x=0 and xk'1#0, then
(1) ez(R), So (x*7'y)"x=0 and (x*"1y)™1 0.

Hence the right ideal xk'1R is nil of bounded nilpotency index.

Lemma 1.1 (5] implies xk'1=0 since R is a prime ring. This contra-
diction proves the claim.
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Assume xy=0. Then yx=0. Hence xry=0 for all reR. Since R is
prime x=0 or y=0. Thus R has no zero divisors.

Let R be a prime ring with identity satisfying (8) in the Pro-
position. For any x#£0, and y in R, commute (8) by x and left can-
ceal x to obtain

(9) (yx)n-xn_1yner.

We interchange x and\y in (8) to give

00)  (yx)"-y"x"ez.
We use (9) and (10)and we get

(1) ¥y x" Ty e [y 11 xez.

We apply the condition (11)to prime rings for n=2 and n=3 and
we prove the corollaries.

2.3. COROLLARY ({GUPTALZ2I)Let R be a prime ring with identity 1
satisfying ’ )

)2-x2yZeZ(R) for all x,yeR.

(x)  (xy
Then R is commutative.
Proof. For n=2, the condition (8) in the proposition takes the
form (%) hence (11) gives rise to
) .
{12) [y®,x1 xeZ(R).

Since R has no zero divisiors

[yz,x] xeZ(R) implies [y2,x] x=x[y2,x] .
Assume Ch R=2. Replace y by x#y in (12)to obtain
{{x,y1,x] xeZ(R)Hence R satisfies the 3-rd Engel condition
[ x,yl,x1 ,x1 =0.
If ChR#2, Replace y by 14y in (12)to get [y,x] xeZ(R). Thus
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[[x,y],x] =0 which is the 2-nd Engel condition. In both cases R
satisfies the finite Engel condition. Hence R is commutative [4].

2.4. COROLLARY . Let R be a prime ring with identity satisfying
(%x) ... (xy)3-x3y3eZ(R) for all x,yeR. Then R is commutative.
Proof. For n=3,(4) takeé the form
(13).-. [y° 2 IxeZ(R).

Assume ChR=2. Replace y by 1+y in (13)and we obtain
[y2+y,x2]XeZ(R). In this we replace y by x+y and we get
[[X,y],XZ]XeZ(R). In this, replace x by 1+x we have
[[X,Y],XZ]eZ(R). This and primeness of R implies xeZ(R).

If ChR#2, replace x by 1+x in (13)two times to get

(1) y3,x] cZ(R).

We replace y by yx in (14)and use primeness of R to conclude that
X3e Z(R). This implies the commutativity of R as it is well known.

2.5. THEOREM. et R be a semi-prime ring with idéntity 1 and sa-
tisfiying one of the following conditions

(i) (x y)’2-><2y2 e Z(R)

.. 3 .33 ;
(ii)  (xy) -x"y~ e Z(R) for all x,y in R.
Then R is commutative.

~ Proof. Every prime homomorphic image of R satisfies the condi-
tions (i) and (11), and then we combine the Corollaries 2.3 and
2.4 with (i) and (ii) to obtain the commutativity of R.

Note that in the general case nzd4 it is not known if condition
(11)implies the commutatity of R. Some restrictions on the rings
are needed since nilpotent non-commutative rings of bounded nilpo-
tent index t>4 satisfy (11).The ring remarked on by Bell in[ 1]
shows that some restrictions are needed to obtain commutativity
for rings satisfying the condition,
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[xn,y] - [x,yn] eZ(R) for nx, In this direction Bell proved the
commutativity of rings R satisfying [xn,y]=[y,xn]ifR+is n-torsion
free. For n=2 Gupta generalized this to semi-prime rings satisfying
[x2,y1-Ly X2 JeZ(R).

As in the previous proofs, by using the Engel condition for prime
rings, we may prove ’

2.6.THEOREM . Let R be a semi-prime ring with identity satisfying
3 3] .
[x7,y1-Ix,y"1eZ(R), for all x,y in R.

If R*is 6-torsion free then R is commutative.

OZET

R birimli bir halka olsun. R de agadidaki bagintilari gdz dniine
alalim:

i) [x",y1 - [x,y"3ez(R)
ii) [x™,y1 - [x,y"1eZ(R)
burada m,n aralarinda asal pozitif tam sayilar,

)2 - xzyzeZ(R)

iv) (xy)? - 3P aw)

v) [x3,y] - [X,y3]€Z(R).

iii) (xy

Bu ¢alismada yukaridaki i) ve ii) yada iii) yada iv) bagintila-
rini saglayan halkanin komitatiflidi ispatlandi. v) badint: hal-
kanin, Rt grubunun karakteristidi alti olmamas:i durumunda, komiita-
tifligini gerektirdigi gosterildi.
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POWER COMPARISONS OF SOME OUTLIER TESTS

H.Tatl1di] (1)

In this paper test “statistics introduced by Gentleman -
Wilk, Cook and Andrews - Pregibon for detecting outliers in
regression models are considered. The critical values for
these tests are obtained and the powers of the tests are com
pared by performing Monte Carlo technique for various sample
sizes and probability levels. The performances of the under-
lying test procedures are also demonstrated by using the app-
roximated percentiles in a numerical example.

Key words : Outlier, Power of a test, Monte Carlo technique

1.INTRODUCTION

A common problem in reqression analysis is the detection of out-
liers in the data set. It is well known that an outlier usuallv
provides a large residual when the chosen model is fitted to the
data. Therefore, most of the outlier detection nrocedures are
based on residuals or some functions of residuals such as student-
ized residuals and.standgrdizéd residuals [21.

In this naner s&me outiier detection tests which are most]ly based
on residuals are examined. These nrocedures have been introduced
by Gentleman and iilk [8], Cook [3, 41, Andrews and Preaibon {11.
The statistics of these tests are resnectively called 0K,Cij ..
and AP(AP1, AP2). At first their percentage noints are ohtained
by Monte Carlo generations as in [6,9,11 1, and these values are
tabulated. In the second step of the simulation, the powers of the

(1)Hacettepe Univ,Fac,of Science,Statistics Dent.Ankara,TUPKEV

it
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tests are compared afainst each other when a single contaminant

exist for various p, n and o values. At last, the performances of
these procedures are examined applied to a numerical exampie.

2.S0ME MATRIX NOTATIONS

Let Y be &n nx1 vector of resnonse, X is an nxp matrix of ex-
. planatory variables with rank n, 8 is a px] vector of unknown pa-
rameters and € is an nx] vector of residuals. Let also Y= Xg+e
be a multinle rearession model. In usual notation, the basic mo-
del for the case when some outliers exist can be expressed as ;

en =effzl= k] ENERY

Here the observations are divided into two qroums, Yz consists of
k observations which are being considered as nossible outliers or
influential observations, Y, consist of the remainina n-k observa-
tions [ 7, 10]. The least sauares residuals of this model is qiven

by,

= YoYh = (] = |I-R11 -Rpj|Y1} =|e1
€= Y-Xb = (I-R)Y l:—Rn I_Ré][Y:J [ezJ ..(2.2)

where b = (X'XilX'V and Rij= X; (X'X)' X} is a submatrix of

R =X(X'X)' X' {7, 10].

Deleting the suspicious Y, observations aives the model
E(Y{) = X;8 . On the other hand Draner and John I71 offered an al-
ternative model to model (2.2) by using the matrix form,

E Bz]-&z I:] M .. (2.3)
where Y is a kx1 vector of additional narameters. The estimators
of 8 and y are respectivelyv b*and C, defined by,

b*= (x4 %)’ XiY, (2.8
2q ,(2.5)

Then extra sum of squares or outiier sum of squares has been
shown by Gentleman and Wilk [8] and also Draner and John [6,7,9]

c= (I-RZZ
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to be

2) -1
Q& = eé (I—Rzz) 62 . . (2.6)
Estimate of o® is defined by,

3 = s* = e'e/(n-p) = RSS/(n-p) L (2.7)

3.S0ME EFFICIENT OUTLIER TESTS

In this section we explain briefly the test statistics that
are included in the comparison.

3.1.Gentleman and Wilk Test : Gentleman and Wilk (8] develoned a
test statistic QK for two-way tables. Then John and Draper
[9] used this statistic for one, two and three outlier cases in
two-way tables. Furthermore they tabulated percentage noints of

Fy F* and F**(which are functions of QK) by using simulation tech-
niques [ 6,9]. It has been shown that QK is an efficient outlier
procedure and distributed as o X} under the null hypothesis [8] .

John and Draper also used the following statistic ;
F = (n-p-k)QK/k(e) e; -QK) .. (3.7)

as a test criterion. F has a central F distribution with k and
n-p-k degrees of freedom [61].

3.2,Cook Test : Cook [3,4 | proposed a test statistic based on

" confidence ellipsoids -for judging the contribution of each data
point to the de%erminétion of the least squares estimate of 8.

This statistic is defined by,

Cije= (b-6")'X'X(b-b*)/ps? ..(342)
where b and b* denote the estimates of g with and without the ith
and jth data points., ith and jth elements of Y belong to the Y»

response vector and X, submatrix, Cook and leisbera [S1considered
the performance of this test statistic. Draper and John [7]

EE)QK values given in this study are 1/100 of their actual values.
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expressed Cij»» as,

Cijes =c'Ryc/ps? ..(3.3)

T

and because of the equality c'Ryy ¢ =c'c-K, Cijee is

-

Cijoe = %éz[—c-m%"il .(3.4),
3.3.Andrews and Pregibon Test : The Andrews and Preqibon statistic
AP is based on matrix of X* = (X:Y) 4 the matrix of explanatory
variables anpended with Y vector, This matrix for model in equa-
tion (2.1) is,

*

X, = (X:¥) .(3.5),
and for model in equation (2.3) is

*

Xy = (X:D:Y) .. (3.8)
where D = [?]. The Andrews-Preqibon statistic AP is defined as ;

- Tk ok k %

Riju —I.Xz X2|/|X1 Xll (347)

'ij.. denote the k subscripts selected to form Y, {1]. Test statis-
tic is based on the nroportion of volume in XT attributable to the

k observations which are nossible outliers. Draner and John [7]
established that,

REs o= (1-QK/RSS) | 1-Rypl = APIxAP2 = AP ..(3.8).

where AP1= (1-QK/RSS) and AP2=]| I-R,,| also pronosed as two new
outlier tests. Then Tatli1dil [12] showed that AP1 has a beta dis-
tribution with (n-n-k)/2 and k/2 degrees of freedom under the as-
sumption that AP1 and AP2 are indenendent. Tatl1dil also showed
that AP1 and AP (which has a central beta distribution with
(n=p-1)/2 and pn/2 deqrees of freedom) tests can be used for test-
ing outliers in multivariate data. The critical values of AP and
AP1 have been obtained by using first and second ofﬁer Bonferroni
inequalities and these values have been tabulated for k=1(1)5 ;
p=2(1)9 ; n=5(1) 31(5)57(17)120 and o= n.,N1,0.75,0,70 [12 ],
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4, STHULATION STUDY

In this section, the nercentade points of the test statistics

QK, AP1, AP2, AP and C;; are obtained for each combination of o( num-

ber of narameters) and n(samnle size) while k(number of outlier)=l,
The percentiles are estimated from the equations (2.6), (3.4) and
(3.8) by usinqg Monte Carlo techniques. 570 samnles are generatéd
for each case. Then the nowers of the precedures are obtained for
the same values of the narameters.

In the simulation studv, a multiple rearession model as
Yi = xi181+ seeet Xipo + ej_ i=1,2,-lcn ._(4.])
is considered and it has two main staqges.

In the first stage of the simulation the following steps are
employed.
i) n values of first column of X matrix are filled with 1 while
other nx(p-1) values of the p-1 columns with the values 0 and 1.
ji) n values of the residual vector € are generated from N(9,1).
population,
iii) n values of the response vector Y are obtained from the equa-
tion in (4.1)
iv) Test statistics QK, C;5 , AP1, AP2 and AP are calculated from
equations (2.6), (3.4) and (3.8).
After repeating the process 590 times, the values of each test sta-
tistic are sorted in ascendina order. Then the upper percentaqe
points of QK and Cij and lower percentade points of AP1, AP2 and
AP are recorded as critical values of these tests statistics. They
are tabulated and given in Annendix A, Table A.1 for p=2(1)5;
n=10(5)40 and «=0.01,0.05 and 0,10,

The second staqge of the simulation consist of two substanes. In
the first substage all the above stens are emnloyed except a dif-
ference in the second step. That is a perturbation in the nth
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value of the residual vector by a constant A= +1 (if generated val-
ue e, negqative - A is added, otherwise A is added). On the other
hand there is one more step, this is:

v) Calculated values of the test statistics are comnared with the
corresponding critical values qiven in Table A.T.

This process is also repeated 500 times and the number of the

cases where calculated values of QK and C;jare greaterthan their cri-
tical valyes and calculated values of AP1,AP2 and AP are less than
their critical values are denoted as their nowers. These values

are tabulated in Apnendix B, Table B.1.

In the second substage the value of the constant A is changed.
In this case A= *2. The values obtained in the second substaqge are
given in the Table B,2, for the same parameters.

5.4 NUMERICAL EXAMPLE AND DISCUSSION

We demonstrate the test procedures considered in this study by
using a data set given by Mickev, Dunn and Clark and examined by
Draper and John [7] and Little [10]. The observations and their
corresponding values of the test statistics are given in the Table
1,

It is seen from the tahle that ohservation 19 is identified as
an outlier if NK and AP1 tests are used, whereas observation 18 is
identified outlier if AP2, AP and C;; tests are used. Furthermore
the correlations between the values of the test statistics{columns
of Table 1) are :

Variable AP1 AP2 AP - Cy;
QK -0,999 0,953 -0.539 0.295
= AP1 -0.053 0,539 -0.294
CORLHATRIX AP2 0.812 -0.934
AP -0.960

The results of the outlier analysis and also the correlation
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TABLE 1.Aqe at First Word(X), fessel Adantive Score(Y) and their
correspond ng Test Statistics Values..

Case X Y 9K AP1 AP2 AP Cij
15 95 0,043 0,998 0.952 0,950 0.009
26 71 1,084 0.953 0.845 0,806 0,081
10 83 2.598 0.887 0.937 0.832 0.072
9 91 0,820 0.964 0,929 0.896 0.026
0.857 0.963 0,952 0.917 0.017
20 87 0,001 1.000 0,927 0,927 0.000
18 93 0.124 0.995 0,942 0.937 0.003
11 100 0.067 0,997 0,943 0.941 0.002
8 104 0,107 0,995 0.920 0.916 0,704
10 20 94 0.479 0,979 0.927 0.908 0.015
1 7 113 1.334 0,942 0,909 0.857 0,055
12 9 96 0,150 0.994 0.929 0.923 0,005
13 10 83 2,598 0,887 0,937 0.832 0,072
14 N 8 1,925 0,917 0,943 0.865 0,048
15 11 102 0,217 0,991 0,943 0.934 0.005
16 10 100 0,021 0,999 0,937 0.936 0.000
17 12 105 0.789 0.966 0.948 0.915 0,018
18 42 57 0.881 0.962 0,348* 0.335* 0,678
19 17 121 9.686*0,580* 0.947 0.550 0.223
20 11 86 1.396 0.939 0,943. 0.886 0,035
21 10 100 '0,.021 0,999 0,937 0.936 0.000

Unusual values High Low. Low Low High
are e

O ONO O HWRN —
pu—
o
—_—
Q
N

matrix showed that QK and AP1 statistics tends to nrovide similar
results for outliers. In the discussions of the various authors
such as Little f10], observation 18 was also identified as an out-
lier. AP2, AP and Cij statistics annroximatelv nrovide the similar
results which was also mentioned in the nrevious works. These sta-
tistics are sensitive to influential observations which have much
affect on the fitted equation. As a conclusion OK 1is the most
nowerful test amona them,

Acknowledqements : The author would like to thank Prof.Dr. Aydin
Oztiirk and Associate Prof.Dr. Soner %9nen for their helnful com-
ments and criticism,
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APPENDIX A : CPITICAL VALUES OF TEST STATISTICS
TABLE A.l. Critical Values of OQK, APl, A®2, A™ and Cjj Statistics Obtained from 57N Generations
for Various Values of n and p,
P: 2 3 4 5

Test n a: 0,01 0,925 1,10 0,01 0,05 n,10 0,01 nN5 1,10 0,11 N0N.05 N, 11
10 3,424 1.981 1,608 3,824 2,172 1.678% 4.669 2,700 2,258 3,024 2,527 1,902
15 3,783 1,986 1,542 3,217 2,961 1,542 3,616 2.A85 1.845 13.392 2.730n 2,027
20 3.881 1.895 1,365 2.447 2,098 1.456 13.892 2,178 1.701 4,091 2,669 2,1N3

0K 25 3.588 2,678 1,648 4,599 2,486 1,984 4,165 3.2N8 2,131 3.963 2,466 1,772
3n 2.440 2,148 1,803 3,851 1,874 1.6N0 4,340 2,737 1,524 2,987 1.868 1,436
35 3,617 2,328 1,840 3.345 2,553 2,052 3.N96 2.5A2 1,649 3,533 2,039 1,597
4n 3.504 1,872 1,648 2,979 1.678 1.407 3,338 2.855 1,851 4,476 2,503 1,754
1n N.389 0.589 0,649 N,437 0,563 N, 660 1,197 N,412 N.475 0,301 N.410 0,466
15 N.6N04 0,750 0,837 (.508 n,72a6 n 770 0,644 N, 701 0,774 0,434 N, 564 N, 687
20 N,692 0,847 0,896 0,724 N,801 n,852 N,662 N.785 N,828 N, AR N, 725 N 825

AP1 25 0,693 0,840 0,894 0,757 N, 828 n, 86N N,677 N,76A9 N,791 N,657 N, 824 N 876
30 n,839 n,868 N,889 N,770n 0,837 n.83F N, 727 N .82 N, 372 N, 78N N 8]5 N, A8
35" 0.843 0,883 n,923 N,8s7 N,AN9 N,032 N 85N n,873 n,a15 N_779 N,837 N,904
40 0,90n 0,917 n,938 0n,859 N,9N05 0,919 0,846 N,884 n, 412 N K813 H,89]1 n,ang
1n N.423 0,543 A,579 0,387 0,428 n,513 0,282 N.343 n,322 7,137 N187 N, 277
15 0,545 0,612 0,718 0,445 0,462 7,571 0,352 0,450 0,498 0,370 N, 404 n,523
20 N.685 0,741 N, 768 N,565 N,64N N,682 N,.5N1 1,593 N,A25 n,528 N,581 ",Al4

AP2 25 0.702 N.817 0,839 0,623 N, 715 n,777 0,571 N,657 N, 692 n,623 N,680 0,732
30 0,773 n.829 0,881 0,620 0,711 N, 769 a.644 0,725 N, 760 N,679 N, 725 n,753
35 0.779 0,829 N, 862 N_681 N, 764 n,83n 0,769 0,801 n,830 N, 784 H,756 n,.778
40 0.839 0,875 0,883 0,677 0,743 0,79 n,805 n,818 n,831 N,776 N,300 0,819




TABLE A.l. ( Continued)

P: 2 3 4 5
Test n af 0.01 0,05 0,10 0,01 n,05 0,1n n,NL N,nN5 0,10 0n,n1 n.N5 0,10
16 N.247 N,416 0,456 0,264 0,370 0.413 N,1N8 0,174 0,226 N.N74 0,146 N, 1A0
15 0.513 0,561.0,631 0,369 0,448 0,492 0,326 0,370 N,440 n,264 0,352 n,381
) 20 0,618 1,671 0,728 N, 449 0,565 N,638 N,434 0,523 N 552 0,450 N, 500 N, 541
AP 25 N,665 0,780 0,809 N,511 N,623 N,718 0,478 0,548 N.646 0,452-0,605 0,663
30 0.746 0,808 0,819 0,619 N,647 N, 731 N,6N6 N,665 N, 705 0,636 N 669 N, 706
35 0,743 0,791'4,813 0,625 0,727 N, 810 n_711 N, 764 N, 776 N,A37 N, R85 N,728
40 N.,803 0,852 0,861 N,629 0,743 0,796 0,756 0,779 0,790 Nn,658 N, 744 N, 767
10 2.413 N,688 0,487 1.154 N,473 0,308 1,463 1.037 N,790 2,9N6 N, 9NN 0,666
15 N,501 0,258 0,148 0n,916 0,374 0,298 NnN,747 N, 471 N,349 N, 870 n,518 N, 383
20 0,404 0,226 0,163 0,884 0,288 N0, 136 N,551 N,361 N.205 0,407 0,362 0,216
Cij 25 N.165 0,104 n,N76 1,430 0,282 0,135 0,553 N,408 0,237 n.426 0,206 N, 121
30 0.160 0,128 0,089 0,274 n,147 0,092 N300 N,164 0,118 0,208 N, 15" n,115
.35 .. .0.288.1,170..0,110..0,155..0,118 n.N96 . 0.179 0,125 N.N8L .N,296 0,183 n,N36
40 0.160 N,N93 n.N8N n,136 0,064 N.N48 N,157 N, 129 N .N91 0N, 309 n,143 N 1N3

S8
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TABLE B.1l: (Continued)

at N1 NeN5 n,10
P n Test: OK APl AP2 AP C;: 0K APl AP2 AP Cij _OK APl AP2 AP Cjii
1n 0,11 n,N5 0,01 A,N5 N,0N6 N,36 0,25 N,N N,10 N, 14 Nn.45 n,33 n.1n 0,26 N,18
15 0,23 0,30 N0 0,09 0,06 .40 0,40 N,N2 n,15 N.16 0,58 N,59 N.N5 N, 26 N,23
2N n,20 0,09 1,01 N,N8 0,10 0,53 0,44 0,05 0,22 0,17 0,61 N,62 N,11 N, 24 0,44
4 25 0,20 0,11 1,00 0,N6 N,N7 0,25 0,22 H,09 A 14 0,11 0,50 0,24 0,14 1,32 0,25
30 0.20 0,07 0,01 1,12 0,13 0,41 N, 31 n,06 0,18 N,28 N,72 N,64 N,N9 N, 31 N, 44
35 0.30 0,24 0,03 0,13 0,22 0,35 1,33 N,11 N,34 0,26 N.64 0,54 N,22 0,37 0,43
408 0.32 0.22 0.0Q 0,24 0,17 N.40 0,44 6,00 0,31 N, 26 0,65 N, 57 N, 12 N, 37 N, 38
15 N.14 0,04 0,03 N,N5 0,06 N,36 0,17 0,17 0,23 0,19 0,48 0,41 0,10 ", 28 n,28
2N n,16 9,17 N.N07 0,17 N, 12 0,35 N,28 n,13 0,26 N,18 0,48 0,57 0,20 n,32 0,29
5 25 N.12 0,05 0,06 0,11 N, 10 Nn,41 N,37 0,17 0,22 0.20 0,57 0.58 0.26 0,36 0,41
30 0.34 0,23 0,06 0,22 0.11 0,56 N.54 N.11 N33 0,32 N8 N,R4 N, 20 0,43 0,44
35 . . 0,31.0,16..0.06 0,16 .0.12.. N.50.0,28 N,15.N0,25.0,23 0,63 0,52 n,21 N, 44 0,51
40 0,14 H,09. 0,08 0,07 0,04 N,45 0,38 0,13 0,25 N, 18 N,64 N,54 0,18 0,31 N.26

(8
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OZET

Bu calismada daha “nce Gentleman - Wilk, Cook ve Andrews -
Preqibon tarafindan rearesvon modellerindeki avkiri dederlerin
(outliers) test edilmesi icin #nerilen yontemler incelenmistir.
Monte-Carlo benzesim ysntemi kullanilarak bu testlere iliskin kri-
tik deferler n=2(1)5; n=10(5)49 ve «=0.01, 0.05,0.10 icin tablo-
lastiriimistir, daha sonra ise yine aym narametreler icin yintem-
Terin glic deferleri bulunarak karsilastirilmistir. Son olarak da
bu yontemlerin qecerlilikleri (elde edilen kritik deferler kulla-
nilarak) sayisal bir Ornek ‘izerinde incelenmistir,
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PARTIAL SOLUTION FOR
STACKELBERG DISEQUILIBRIUM IN DUOPOLY

‘.E.Sﬁzer(]), M.Sucu(])

In this study, we obtained a partial solution for the
Stackelberg disequilibrium situation in a duopolistic market,
by assuming the sum of the profit functions of two firms as
the objective function of the multicriterion decision making
problem and using two—-person zero-sum game approach,

In order to get better understanding of the solution an
application is given in Section 4,

Key words: Stackelberg disequilibrium, Duopoly

I. INTRODUCTION

- In a duopolistic industry there are two sellers.There
jre no generally accepted behavior assumptions for duopo-
tlists as there are for perfect competitors and monopolists.
}Different assumptions produce different solutions for
fdﬁopolistic market. The well known solutions are Cournot,
fcﬂ]usion, Stackelberg, market shares and kinked demand

f curve.,

i In the Stackelberg solution one duopolist is leader
Fuhile the other is follower. Duopolist. I is leader in

¥ the sence that he knows II's reaction function. Each duopo-
F 1ist determines his maximum profit levels from both leader-

jship and followership and desires to play the role which

% (1) Hacettepe University, Flculty of Science, Department of Statistics,
Ankara, TURKEY.

i
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yields the larger profit. Four outcomes are possible: i) I desires t
be leader and II - afollower, ii) II desires to be a leader and I a
follower, iii) both desire to be followers or, iv) both desire to. be
leaders. The first two outcomes result in a determinate equilibrium
which is known as Stackelberg solution. The third outcome results in
Cournot's solution as shown in Henderson and Quandt [2,pp.230]. The
fourth outcome is known as Stackelberg disequilibrium,

In thjs stydy a solution for the Stackelberg disequilibrium case
is obtained. In the duopolistic market when each of the duopolist
desires to be leader, each duopolist thinks that he knows the other’
reaction pattern and determines the profit-maximizing supply based g
the other's reaction function but neither of the reaction functions
is observed and Stackelberg disequilibrium comes into existence. Und
this condition, over-production and different prices result in the
market. After they become conscious of this situation they may reach
an agreement in determining the price and the profit shares to
maximize profits of each other. This leads the market to a new part
solution for the Stackelberg disequilibrium case. It is a partial
\solution and not a definite solution because it comes about only if
agreement between duopolists is reached.

2. METHOD

A game with two players where a gain to one player equals a loss

to the other is known as a two-person zero-sum game [ 3,pp.339] . Each

-player has a finite number of strategies. The matrix which summarize
the outcomes in terms of the gain (or loss) to one player, for all
possible strategies of both -players.is called the pay-off matrix.
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The entries of the Pay-off matrix Tt (k=1s...,p, t=1,...,p)

represent the expected gain for player I when he uses strategy k
and player II uses strategy t. lLet >‘k be the probability that.
player I will use strategy k, and Ky be the probability that player
IT will use strategy t, then

g A S \Z0 for all k (2.1)
k=1
S i b 20 for all t (2.2).
t=)

The expected pay-off for the game is given by,

p-% %

. A, M
k2l t=] KOk .{2.3),
0

o

Let P0 be the minimum value of P and P~ be the maximum value of P.
The solution of the game can be obtained by solving either of the
following pairs of linear programming problems [1,1973]:

. 1 P
Min (-'PO— ) =k—£] rk .(2‘4)
S.t. ) § me =1 r >0 _(2.5)
k=1
or
Max (‘%‘") _ 2 5y _(2.6)
P =1
5.t. g”kt 5;<1 520 .(2.7)
t=1
L At the optimality,
Py =p0 =" _(2.8)




]

and

w * o * ad

*__
xk—-rk P, ¢t P .. (2.9)

where P is optimal solution.

3. MODEL

Two firms are assumed to progduce a homogenous product. The inverse

demand function states the price as a function of the aggregate
quantity sold:

p=F (a,+q, ) .(3.1)

where p is price, 9 and q, are quantijties of the duopolist§
outputs. The profit of each equals his total revenue less his cost,
which depends upon his output alone.

= Ry(a),) < Cy(a) 32
7r2= Rz(q] :QZ) - cz(q2) .(3.3)

where L and uéare profits, R] and R2 revenues, C] aﬁd C2 costs of
the first and the, second firms. ' '

By assuming the sum of the profit functions of the firms as
the objective function of the multicriterion decision making prob-
lem and using two person zero-sum game approach we may reach a par-
tial solution for the Stackelberg disequilibrium situation.

Solving for tne leadership functions of I and TI individually
we can determine q{'s and wi's under Stackelberg assumptions:
Forming pay-off matrix with entries of profits of the firms under

leadership function of each of the firms, then using two person
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zero-sum game method, optimal weights ki's are obtained, and the
compromise objective function is,

’ :
"=ii] LA (qi) ..(3.4)

where ki's are the optimal weights that firm I will use strategy i.
Then

4. APPLICATION

We use the example in Henderson and Quandt in order to get

a clear explanation of the partial solution [2,pp 226-231].

p=]00'0-5 (q] qz) (4])
C] =5 a4 .[(4.2)
C,=0.5 q,2 (4.3)
2 . q2 . .

and the profits of the duopolists are

=95 q, -0.5 ;% 0.5 q; 9, (8.4)
— - B - 2
1, =100 q, -0.5 Gy G, G, . (4.5),
For maximizing conditions of I and II we set appropriate

partial derivatives equal to zero:

on

1 —ac - - - '
”n'q']'"""s q,-0.5 a, =0 .(4.6)
auz,
—— = 100-0.5 q; -2 q,~ 0 NCNAP

2
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The corresponding reaction functions are,

q;= 95 -0.5 q, _.(8.8)
9,= 50 -0.25 g _(4.9),

The maximum Jeadership profit of I is obtained by
substituting II's reaction function (4.9) into I's profit
equation(4.4),

m =70 g, =0.375 g, ..(4.10)

and maximizing with respect to qy we obtain

q,= 93.33 1}]= 3266.66

Under the leadership of I, the II's production and profit are

q,=26.66 and 7, =T11.11 ,

That is

o= (93.33, 26.66) .

Likewise for the II's leaderahip and I's followership
assumptions the profit function of II is

- 2
m,=52.5 g, -0.75 q, _(4.11)

and the solutions for maximizing are

q,= 35 ,=918.75

q = 775 LE W 3003.125
that is

a2 = (35,77.5).

Each duopolist receives a greater profit from leadership, and
both desire to act as leaders. Under this situation the reaction
functions will never be observed and Stackelberg disequilibrium

a2



The pay-off matrix with entries w,

ij is formed as

4
q*] qr

%, |3266.66 3003.125
T, 71 918.75

Solving for optimal profit shares as in the case of two-

person zero-sum game technique, we get

3266.66 A, - 711,111 A

] 2P

2

3003.125 M- 918.75 A, =>P

where P is the value of the game, and

A]+ )\2 =]

x’; = . 440678
* —

N, = .559322

Maximize t=7\] 1r] + )\2 12

= 2
—x](95 q -0.5 ) - 0.5 qy 9,

(e 2
. _+>‘z (100 9, -4, 0.5 q; q ) -

!

For maximization

om  _ on o - =
—zﬁr x](95.q] 0.5 qz) 0.5%, q,=0

0% _ 0.5 A
qu ‘

q; A, (100-2 g, -0.5 q,)=0 -
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The solutions are

q, =77.64705911

q2=15.294n744

2

In that case we obtain the profits as

= 3768.17
1r2 =701.73
T = 4469.2.

Also different solutions of the duopolistic market under
different assumptions are summarized in Table 1 for comparison.

Tabie 1. Eguilibrium Values of the Price, Quantity Produced and
Profit of the Duopolistic Market

Cotlusinn | Cournet Stackelberq Salution” New

Sulution Solution T T YTead T TolV T TVOTT 1T Tead Solution

Harket Price 2.5 s 10 43,75 53,53

“terket 95 110 120 A 1i2.5 92,94

23frim 1 90 80 91.33 1.5 17.65

Z3rim 1 5 ] %.66 3 15.29
- 0]
e
o

Herket 4525 4100 3977.18 3921075 4469.9

Ziim . as 370q 3266. 66 .3000,125 3160.2

2l 250 900 m.ne 918.75 012

1 —_— -
a) The entries are taken from Henderson and Quandt 2, pp 175-186.

b) This entry is different from the book.



OZET

Bu ¢alismada, iki saticili piyasada, iki firmanin kar fonk-
siyonlar: toplami, ¢ok amagl:i karar fonksiyonu varsayilarak, iki-
kisili sifir toplamli oyun yaklasimi ile Stakelberg dengesizligi
durumunda kismi ¢dziim elde edilmistir.

{6zimiin daha iyi anlasilabilmesi i¢in bir uygulama da ya-
pilmigtir.

REFERENCES

1. Belenson, M. and Kapur, K.C. An algorithm for solving multi-
criterion linear nrogramming with examples, Operation Research
Quarterly, 24 (1), 1973.

2. Fenderson, J.M. and Quandt, R.E. Microeconomic theory a mathe-
matical approach, Mc Graw-Hill. Inc. 226-231, 1971.

3. Taha, H.A. Operation research an introduction, Second Ed.
MacMillan Publishing Co. Inc. New York, 239-243, 1976.



Hacettepe Bulletin of Natural Sciences and Enmgineerirg 101
1986/ Volume 15/pp. 101-108

A DYNAMIC REGRESSION ANALYSIS
OF THE ENERGY CONSUMPTION BASED ON INCOME

c. Erdemir 1, s. cakmak (1)

Based on annual data a dynamic regression model is built
for the endogenous time series Yt = energy consumption and
exogenous series X, = per capita gross national product.
Dynamic regression models of which error terms fits to
AR(1), AR(2), MA(1), ARMA(1, 1) * stationary stochastic processes
are reviewed and maximum likelihood estimators of these models
are introduced. It is concluded that the dynamic regression
models are found more efficient than the classical regression
model,

Key words: Dynamic Regression{ ARMA(p,q) Models, ML Estimators

INTRODUCTION

One of the assumptions of the classical linear regression model
is the serial independence of the disturbances, that is
E(uu') = ozIn.

A general linear madel can be written in matrix notation in
the following manner:

Y=Xb+u
where, X is n x k matrix of the observations on exnlanatory
variables and is assumed to be full rank, b is a k x 1 vector
of parameters to be estimated, u is an n x 1 vector of stochastic
disturbances. Fundamental assumptions of a normal classical
linear regression model can be written out in the following

(1)Hacettepe Univ., Fac.of Sci., Statistics Dept., Ankara, TURKEY



102

manner: (1) Zero mean assumption: E(u) = 0. (2) Homoscedasticity
assumption + non-autocorrelated error assumption:
E(uu') = ozln, when I is an n by n identy-matrix. (3) Lack
of simultaneity assumption: E(X'u) = 0,

In practice, using ordinary least squares (QLS) estimates
when disturbances of the model are autocorrelated is the possi-
bility of non-sense relationships between time series when in
reality there is no correlation between the series under investi-
gation. This point was first emphasized by Cochrane and Orcutt
[3] and was later on formalized by Champernowne [2]. 1In order to
avoid many complications and spurious results of the QLS regres-

sion, some models are proposed; called dynamic regression models,
where it is assumed that the u, error term follows a stationary
stochastic process such as autoregressive process, AR(1), first
order moving average process, MA(1), second order autorearessive
process, AR(2) and the first order mixed autoregressive moving

- average process, ARMA(I,I): A brief review of the literature
on the problem of dynamic regression can be found in Paseran
and Slater [7].

DYNAMIC REGRESSION MODELS

| Dynamic specifications of the models may occur in the
stochastic parts as explained above. Besides that, the dynamic
specifications of the regression model may occur in the deter-
ministic part, named the distributed lag model. So, general
Tinear reqression equation can be written as:
k-2 © j oo j

y.= IEbx . +b T OAT Xp_s oo 4tb, T oAY x o tu

where Uy is assumed to be specified by the process

Up = Pp g T P U T Ve Ve
and Ve is a pure random process. The notation 04 is used for
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autoregressive parameters and ¥ is used for moving-average
process paraheter. A is the parameter of the laa distribution
and is assumed to be in the range 0 2 x < 1.
The general model can be reduced to specific dynamic models
f under some assumptions on the parameters of x, ¢ , Y such as:

D A =2 =00

that up = Vt'

2) IR VI I 0, first order autoregressive error
specification with fixed initial value. AR(1), so that,

Y = 0, ordinary least squares, So

Up = P Upog = Vg

3) A = hy = py =YE 0, first order autoregressixe error
specification with stochastic initial values, AR (1), so that,
ug - o Ut_1 = Vt’

4) A1 =X = Y= 0, second order autoregressive error
specification with stochastic initial value, AR(2), so that

U 7 Pp Yger T P2 Yp T Vg
5) M A6y =0y = 0, first order moving average error
specification, MA(1), so that

Ut = Vt + YVt_1

6) i1 =Xy = pp = 0, first order mixed autoregressive-moving
average error specification, ARMA(1,1), so that

Ug = o Yoy 7 Wi * V%

more dynamic models depending on these parameters can be written,

7) Py =0y = v =0, distributed 1ag model with non-autorecor-
related disturbances, so that

x1 z 0 and Ao = 0 and Up = Vi»
8) 0y = Y = 0, distributed lag model with first order auto-
regressive error specification, so that

u

A1 z 0, A2 z0 and u

Paseran and Slater [71.

£~ P Y T Ve
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The estimation method is based on maximum 1ikelihood (ML)
criterion as well as most of the estimation procedures currently
used for all dynamic models. The ML estimators of the models
with autocorrelated errors are computed using some iterative
techniques.

These techniques carry out the estimation of dynamic regression
models with autocorrelated errors under three different error
specifications: (1) The Cochrane-Orcutt iteration procedure to
compute o, for AR(1) error specification with fixed initial
values, (2) the inverse interpolation to calculate the AR(1) with
stochastic initial values, (2) the modified Newton-Raphson
iterative technique to compute pq and p, for the AR(2) error
specification with stochastic initial values [3, 4, 11.

Box and Jenkins [11l, gives the ML estimators of the parameters
of the regression model with first order moving-average disturb-
ances. The derivation of the Tikelihood function of the ARMA
process has been pursued recently by Newbold [61.

AN APPLICATION

In this chapter, a dynamic regression model of the consumption
of energy was built based on per capita gross national product
in 1968 retail prices in Turkey. The annual observations
for the variables are shown in Table 1. Some applications on
the same data was done by Kog¢berber [5]. Although use has tried
to be made of first and second differences due to the autocor-
relation in the data, nonacceptable results were obtained. In
this study some dynamic regression models are tried and ML
parameter estimates for different error specifications are
given. The empirical work has been performed with computer
programs developed by Pesaran and Slater [7]. Programs have
been modified and applied to the B6800 system.

ML estimates of the parameters for dynamic models with differ-
ent error specifications are given in Table 2. '
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Durbin-Watson test statistics, log-likel
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ihood criterion, deter-

[ mination constant and error variance are shown in Table 3.

i
\ TABLE 1. Annual Data of the Variables (1951

-1979)

y: Energy Consumption (Thousand tons coal equivalent)

10281 10693 11822 12251 12668 13488
15394 16356 16472 17790 18832 20454
23863 25541 27447 27910 29764 33326
40778 45084 49286 49767 47778

14523 15172
21142 22907
36390 37703

x: Per Capita Gross National Product in 1968 Retail Prices

(1000 TL)

2034.0 2218.8 2396.5 2261.5 2374.0
2534.1 2563.0 2576.0 2559.9 2652.8
2900.9 3169.2 3220.2 3349.5 3443.3
4015.9 4109.5 4304.1 4525.8 4784.3
4768.2

2390.5 2494.0
2838.9 2882.8
3445.8 3826.6
4868.8 4905.8

Source of data: 1985 Statistical Yearbook o

«

H

f Turkey




106

TABLE 2. Error Specifications and Related Models

Model

Error

Number Specification

Model

1 AR(1) Yy = -19924.8 + 13.75 x,
Fixed Initial Values up = 0.50 Uy, x vy
2 w1 Y, = -18629.4 + 13.43 x,
Stochastic Initial Values Up = 0.55 up 4 x vy
3 A(2) Yy = -18609.3 x 13.40 x,
Stochastic Initial Values ug = 0.63 uy =017 uy _o+vy
4 MA(1) Yi ~-18958 x 13.50 Xy
ug = 0.53 x, _, X vy
5 ARMA(1,1) yp = 18665 x 13.42 x,
Ug 0.20 uy _4=0.41v, ,+v,
6 Stochastically Yt -19197.1 + 13.55 x4
Independent Error u V.
{SIE) t t

rd
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TABLE 3, The Test Statistics of the Models

Mode] Error  Durbin- Log~ R? o2
No. Specification Watson Likelihood Residual
1 AR(1) 1.76 -195.03 0.99 1161
2 AR(1)* 1.82 -202.84 0.99 1122
3 AR(2) 1.93 -202.49 0.99 1109
4 MA(1) 1.70 - -202.84 0.99 1135
5 ARMA(1.1)  1.86 -202.67 0.99 1124

6 SIE 0.90 -207.06 0.90 1307

The determination constants, Rz, obtained for each model are’
very high, There is no statistically significant difference
between the constants. On the other hand, it is shown that the
error variances are not different from each other except in the
sixth model. Hence, the log-1ikelihood function value is an ac-
ceptable criterion for selecting the best model. Finally, the
first model was accepted as a useable model which has a maximum
log-Tikelihood value,

CONCLUSION

As a result, a dynamic modet which can be used for prediction
and description is proposed at the end of the modelling process.
It has been shown that dynamic regression models must be
prefered when data arises as a time series and autocorrelations

cannot be removed from residuals.
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OZET

Dissal degisken Yt=y11]1k enerji tiketimini i¢sel dedisken
xt=kisi basina ulusal gelir olan, y1111k veriye dayalir bir
dinamik regresyon modeli kurulmustur. Hata terimini AR(1),
AR(2), MA(1), ARMA(1,1) duradan stokastik siire¢clere uydugu
dinamik regresyon modelleri incelenmis ve bunlarin en cok
olabilirlik tahmin edicileri tanitiImistir. Sonuc¢ta, dinamik
regresyon modellerinin klasik regresyon modellerine gdre daha
etkin oldugu gérilmistir.
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PREPERATION OF FINAL TYPESCRIPT
- APPLIED AND EXPERIMENTAL SCIENCES -

E. Board(1)

This article gives instructions for preparing the final
typescript of your paper. It is laid out according to these
rules, and may be used as a guide. Please indent the abstract
three spaces from the left and right margins, as shown here.

Key words: Type styles, Layout, Spacing

INTRODUCTION

The rules below amplify the information given in (1], and aim
at giving the bulletin a uniform and pleasing appearance. Please
follow them carefully. The Editorial Board are under no obligation
to publish typescripts not conforming to these rules. Please note
that the page numbers and publication identifier (top of page one)
will be added during publication, but you should number the pages
well outside the printing area, so they may be kept in order.

© MATERIALS AND METHODS

The final typescript should be prepared on an electric typewriter
employing a black plastic ribbon and one of the following typefaces
(a) For the main text:
IBM letter Goth 96 or OLYMPIA 808

(1) Hacettepe University, Faculty of Science, Ankara, TURKEY.

* Replaces all previous instructions.

I |
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(b) For the abstract, references, footnotes, subscripts, and super-

scripts:
IBM Prestige Elite 96 or OLYMPIA 802

12 Pitch (12 characters per inch) should be used throughout. The
main title and subheadings should be in upper case. Bold face type
may be used to highlight newly defined terms, important phrases, etc.
Do not use underlining. Special symbols, foreign letters, etc.,
should be typed whenever possible.

The typing area is 14cmx22cm, giving 52 lines and 66 characters
per line at 12 pitch. Only material within this area will dppear in
print. )

The main title and subheadings should be centred. Displayed
formulae, etc., may also be centred if desired.

There should be an indentation of three spaces at the beginning
of each new paragraph. Part identifiers, such as (a), (b), etc.,
should also be indented three spaces from the left hand margin.

The (first line of the) main title should be typed on line 8,
the authors name(s) on line 14 and the first line of the abstract
on line 17. Where there is more than one author the format for the
names is A. Abel(l), B. Cox('), ... . After the first page the text
should beginon line 3. The following table gives the rules for line
spacing.

TABLE 1. Line Spacing.
Spacing Application
1/2 { Subscripts, superscripts.
1 { Abstract. Two lines of the same reference or footnote
Normal text. Between two references or footnotes.
172 { Double-lined title or heading.
Between text and heading to a table or figure.
2 { To emphasize a formula or block of text.

2 1/2 { Between a subheading and following text or item.
3 1/2 { Between text and following subheading.
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SUBSECTIONS

The manuscript should begin with an abstract and introduction,
and end with a Turkish summary (6zet) and references. The main body
of the text should normally be collected into unnumbered sections
headed materials and methods, results, discussion. However other
headings may be used if the above are inappropriate.

- TABLES AND FIGURES

Number tables and figures independently and consecutively through-
out the paper. Table headings should be placed above the table and
consist of the word “table" in upper case, the table number and a
short caption. The caption should be in lower case with the first
letter of each noun in upper case. Figures should be dealt with in
a similar way, but with the heading and caption below. See Table 1
and Figure 2 below.

J Cases(x 1000)

- W s~ O
— 1t

I Year
1978 1?79 ) 1980 - 1981 1982

FIGURE 1. History &f Virus "A" Infection.

Any hand work should be drawn carefully using indian ink. Where
figures are prepared on seperate sheets they should be fixed care-
fully to the typescript in the correct placg. Any lettering should
use the same typeface as the text. Use only horizontal dividing
lines in tables. Internal spacing of tables and figures is left to
the discretion of the author. Wherever possible tables and figures
should be designed to fit neatly between the side margins. However
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very long tables or figures may, together with their headings, be
set lengthwise along the page. A page may contain more than one
figure or table set lengthwise, but on no account should it contain
any text.

MISCELLANEQUS NOTES

(a) Footnotes. Footnotes to page one should give the address(es)
of the author(s) and acknowledments for financial assistance. In
other cases footnotes should be avoided.

(b) References. The punctuation of references is given inside
the back cover of the bulletin, to which reference should be made.

(c) Acknowledgments. Personal acknowledgments may be placed just
before the Turkish Summary (Ozet), as shown below.

Acknowledgment. The author would like to thank ...

0ZET

Bu makale, yazinizin son seklinin hazirlanisi ile ilgili kurallari
icermektedir. Aynm: zamanda kendisi bu kurallara gére hazirlandig:
icin bir ornek tegkil etmektedir.
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PREPERATION OF FINAL TYPESCRIPT™
- MATHEMATICS AND THEORETICAL STATISTICS -

E. Board(1)

This article gives instructions for preparing the final
typescript of your paper. It is laid out according to these
rules, and may be used as a guide. Please indent the abstract
three spaces from the left and right margins, as shown here.

Key words: Type styles, Layout, Spacing
1980 Subject Classification: 00420

f. INTRODUCTION

The rules below amplify the.information given in [1], and aim
at giving the bulletin a uniform and pleasing appearance. Please
follow them carefully. The Editorial Board are under no obligation
to publish typescripts not conforming to these rules. Please note
that the page numbers and publication identifier (top of page one)
will be added during publication, but you should number the pages
well outside the printing area, so they may be kept in order.

2. APPROVED TYPE STYLES

The final typescript should be prepared on an electric typewriter
employing a black plastic ribbon and one of the following typefaces
(a) For the main text:
IBM letter Goth 96 or OLYMPIA 808

(1) Hacettepe University, Faculty of Science, Ankara, TURKEY.

* Replaces all previous instructions.
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(b) For the abstract, references, footnotes, subscripts and super-
scripts:
IBM Prestige Elite 96 or OLYMPIA 802

12 Pitch (12 characters per inch) should be used throughout. The
main title, subheadings and numbered section headings should be in
upper case. Bold face type may be used to highlight newly defined
terms, important phrases, etc. Do not use underlining. Mathematical
symbols, foreign letters, etc., should be typed whenever possible.
Where script letters are called for, but not available, please use
the nearest typeable alternative (eg. upper case italic or bold-
face).

3. LAYOUT AND SPACING

The typing area is l4cmx22cm, giving 52 lines and 66 characters
per line at 12 pitch. Only material within this area will appear in
print. )

The main title and subheadings should be centred. Displayed
formulae, etc., may also be centred if desired.

3.1. DEFINITION. Text which forms part of a numbered item (remark,
definition, statement or proof of a theorem, etc.) will be called
bound, all other text will be called free.

There should be an indentation of three spaces at the beginning
of each new paragraph. Each new block of free text should begin with
a paragraph indentation, but bound text should not contain para-
graph indentations. However the word "proof", and part identifiers
such as (a), (b), etc., should be indented three spaces. An example
1s seen in the layout of Theorem 3.2 below .

3.2. THEOREM. let (xn) be a convergent sequence in the Hausdorff
space X. Then:

{a) Every subsequence of (xn) is convergent.

(b) The limit of (xn) is unique.
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Proof. (a) Immediate from the definition.
(b) Suppose x # y are limits of (x ). Then if M and N are
arbitrary neighbourhoods of x, y respectively ..... :

The (first line of the) main title should be typed on line 8,
the authors name(s) on line 14 and the first line of the abstract
on line 17. Where there is more than one author the format for the
names is A. Abel(1), B. Cox('), ... . After the first page the text
should beginon line 3. The following table gives the rules for line
spacing. '

3.3. TABLE. Line Spacing.
Spacing ' Application

1/2 { Subscripts, superscripts.
1 { Abstract. Two lines of the same reference or footnote
Normal text. Between two references or footnotes.
1172 { Double-lined title or heading.
Between statement -and proof of a theorem, etc.
2 { Between bound and free or bound and bound text.
2 1/2 { Between a subheading and following text or item.
3 1/2 { Between text and following subheading.

Where subscripts, superscripts, etc., are involved the above
spacing may be increased the minimum necessary to maintain clarity.

3.4. EXAMPLE. Increased Spacing.

@ (b) 2

zn

Try to avoid case (b) by rearranging the text. Also avoid the
use of subscripted subscripts, etc.

4, MISCELLANEQUS NOTES

(a) Tables, Diagrams, Graphs, etc. These should be treated as

£
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numbered items. If prepared on seperate sheets they should be fixed
to the typescript in the correct place. Any lettering should use
the same typeface as the text. .

(b) Displayed Formulae. These may be given a number on the right.
Give a two line spacing above and below. See the example below.

4.1. EXAMPLE. Displayed Formula.
If A is a real square matrix then the inverse AT s given by

ATl - T%T Adj(A) ...(8.1)

provided |A| # 0.

Display the elements of a matrix between square brackets. Very
large matrices may be typed with a finer pitch and the smaller of
the two typefaces, if necessary.

{c) Footnotes. Footnotes to page one should give the address(es)
of the author(s) and acknowledgments for financial assistance. In
other cases footnotes should be avoided.

(d) References. The punctuation of references is given inside
the back cover of the bulletin, to which reference should be made.

(e) Acknowledgments. Personal acknowledgments may be placed just
before the Turkish Summary (Ozet), as shown below.

Acknowledgment. The author would like ta thank ...

OZET

Bu makale, yazinizin son geklinin hazirlanigi ile ilgili kurallar:
igermektedir. Ayn1 zamanda kendisi bu kurallara gére hazirlandigi
icin bir Ornek teskil etmektedir.

REFERENCES

1. Board, E. Submission of manuscripts. Hacettepe Bulletin of
Natural Sciences and Engineering, 14, Inside back cover, 1985.



	14_15-1985_1986
	Untitled1
	Untitled2
	Untitled3
	Untitled4
	Untitled5
	Untitled6



