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APPLICATION OF MICROCARRIERS TO 

A RABBIT KIDNEY CELL LINE 

k -1 (1) G (2) M Arlkan(2) C. Clra og u , • Omurtay , . 

Microcarriers (Cytodex 1) were applied to a rabbit kid­
ney (RK) cell line. 

We found that 1 mg/ml Cytodexl was optimal for growth 
of rabbit kidney cells. Rabbit kidney cells were subculte­
red every seven days when they were grown as a monolayer 
in glass culture bottles. On the other hand RK cells grown 
on microcarriers were subcultered every fifteen days. Cyto­
dex beads provide a large surface area for the cells and 
therefore cells grown on Cytodex 1 maintain excellent grow­
th kinetics over long periods. 

We conclude that microcarrier cultures are more econo­

mical than the ordinary monolayer cultures.
 

Key words: Microcarriers, Cytodex I, Cell line 

INTRODUCTION 

Microcarriers are a new idea in cell culture techniques pionee­

red by van Wezel [7]. 

In microcarl'ier cell culture; cell s prol iferate as a monola­

yer on small posHive(y charced beads of sephadex which are sus­

pended in a medium contained in culture bottles [3] . 

The large surface to volume ratio offered by the microcarrier 

system results in high yields of anchorage derendentceTIs(oftenas 

high as 5xl06 cells/ml with 3-5 mg microcarriers/ml) [1]. 

(1)	 Hacettepe Urrive r sj.ty , Faculty. of Science, Department of 
Biology , Ankara,T~RKEY 

(2)	 Hacettepe Universi~y, Sc~oo} of Medidne, Medical B'io l oav 
Department, Ankara ,TURKEY 



2 

More than 80 different cell tYres have been reported to orow 
successfuly on Cytodex 1 microcarriers [2] . 

Cytodex 1 microcarriers are based on a cross-linked dextran 
matrix which is substituted with positively charqerl N,N-diethyl 
aminoethyl (DEAE) groups to a denree which is optimal for cell 

growth. The charged grours are found throughout the entire matrix 
of the microcarrier (Fig.1). 

In this study we tried to arow a rabbit kidney cell line on 

Cytodex 1. This cell line grew perfectly on it. 

Also we established the microcarrier culture method in our 
laboratory. So we can try to arow other kinds of cells, par t tcu­

larly transformed ones by this method. 

MATERIALS AND METHODS 

I. CELLS AND MEDIA 

The rabbit kidney cell line was obtained from World Health 

Organization (WHO) Geneva, Switzerland. 
RK cells were grown in Eaole's minimal essential medium (MEM) 

supplemented with 10 % newborn calf serum and antibiotics. 

II. PREPARING CYTODEX 1 FOR CULTURE 

Cytodex 1 was obtained from Pharmacia Fine Chemicals, Upsala, 

Sweden. The dry Cytodex 1 microcarriers (1 mg/ml) were added to 
a glass bottle and were swo l l en in Ca++, t1q++ free PBS (50-100 

ml/qr Cytodex) for at least 3 hours at room temnarature with occa­
sional agitation [6J. The sunernatant was decanted and the mic­

rocarriers were washed once with gentle aaitation for a few minu­
. ++ ++tes ln fresh Ca , Mq free PBS. 

After swell ina the microcarriers in Ca++, ~g++ free PBS, they 

were allowed to settle, the supernatant being decanted and repla­

ced by 70 % (v/v) ethanol in distilled water. 
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The microcarriers were washed with this ethanol solution and then 

incubated over~ight in70 % (v/v) ethanol (50-100 ml/gr Cytodex) 

for sterilization. The ethanol solution was remowed and the steri ­
lized microcarriers rinsed three times in sterile Ca++, Mg++ free 

PBS and once in culture medium before use. Sterilized microcar­
riers were resuspended in a small volume of culture medium and 

transferred to the glass petri dish. 

III. INITIATING A MICROCARRIER CULTURE 

Rabbit kidney cells were put on the petri dish containing 

Cytodex 1 and 30 ml MEM supplem@nted with 10 % serum was added to 

the culture. Microcarrier culture was incubated at 370C with 

occasional agitation. 

IV. HARVESTING CELLS AND SUBCULTERING 

The medium was drained from the culture and the microcarriers 
washed for 5 minutes in a Ca++: Mg++ free PBS solution containing 

D.02 % (w/v) EOTA,pH 7.6. The amount of EOTA PBS solution should
 

be 50-100 ml/9r Cytodex. The EOTA PBS was remowed and replaced
 

by trypsin-EOTA at 37 0C with occasional aaitation.
 

After 15 minutes the action of tryrsin was stopped by the addi­


tion of a culture medium containing 10 % (v/v) serum.
 

The products of the harvestina stens were then transferred to a
 

test tube. After 5 minutes the microcarriers settle to the bottom
 

of the tube and the cells can then be collected in the SUDer­


natant.
 

RESULTS 

Rabbit kidney cells attached themselve~ to the microcarriers 

3 hours after the cells were put ", Cv t nnex 1. Rf; cells ClrevJ 
we l l 10 hours af tei s t.a r t i no the 1I1l( lUI"I! 1('1' ,ul LUI'e. 

Cells ~rown on beads of Cytodex 1 maintained excellent qrowth 
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kinetics over long periods (Fig.2). We changed the culture me­

dium with MEM containinq 3 serum a week after the microcarrier 

cul ture started. 

Culture orown on Cytodex 1 were more homogeneous than monola­

yer and harvesting was achieved without centrifuging the medium. 

Cylodex , 

Charges 

1hroughoul 
1he matrix 

FIGURE 1. Schematic Representation of the Charged Grours 

on the Cytodex 1 Ricrocarrier 

16.0 

lI'l 

0 4.0 
)( 

E- 1.0 
~ 
QI 
u 

0.25 

0 100 200 300 

Hours 

FIGURE 2. ~e Growth of RK Cells on Cytodex 1 Microcarriers 

and in Glass Bottles as Monolayer 
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DISCUSSION 

We applied a microcarrier culture method to rabbit kindey cell 
line. Cells easily adapted to cytodex beads. 
Cytvdex beads provide a large and smooth surface for the cells 

to attach on [5] . 
We modified some of the stages of the microcarrier culture 

method. We did not stir the suspension culture [4J , because the 
magnetic stir bar can cause collision of the beads. Collision 
of beads was harmful for cells. Also stirrino causes the detac­
hing of mitotic cells from the beads. We therefore put 30 ml of 
medium in petri dishes containing the microcarrier culture of 
RK cells. The occasional aoitation on the petri dishes was 
enough to keep this kind of suspension culture healthy. 
The optimal concentration of Cytodex 1 beads was 1 mg/ml for RK 
cells. When the concentration of Cytodex 1 was high, they preci­
pitated at the bottom of the petri dish, and they stuck to each 
other. But when the Cytodex r concentration was decreased to 
1 mg/ml, an ideal culture condition was obtained. 
The microcarrier culture method we used in this study is more 
economic than the monolayer culture, since we used a low serum 
concentration in maintaining the culture medium, e.g. 3 % serum 
supplemented MEM was used in the microcarrier culture, while 5 % 

serum supplemented MEM was used in the monolayer culture. 
Also RK cells in the microcarrier culture were subcultured only 
every 15 days, w~'er.eas RK cells in the monolayer culture were 
subcultured every 7 days. 
We can say that Cytodex 1 saves up to 50 % of our labour becaus~ 

it is no longer necessary to process large numbers of petri dis­
hes or culture bottles. 

We plan to try to grow some of the poorly growing transfor­
med cells on microcarriers. 

,. ; 
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OZET
 

Tavsan b~bre~i daimi hUcre k~tUrUne mikrotaS1Y1Cllar 
(Cytodex 1) uygulandl. Tavsan bobreni daimi hUcre kUltUrUne opti ­

mal uremesi icin mikrotaSlylcl konsantrasyonunun 1 mg/ml 
Cytodex 1 oldugu saptandl. 

KUltUr siselerinde monolayer olarak Uretilen RK hUcreleri her 
7 gUnde bir pasaj yaplldlol halde, mikrotaS1Ylcllarda Uretilen 
RK hUcreleri 15 gUnde bir pasaj yaplldl. 

Cytodex bilyeler hUcreler l~ln genis yUzey sa91adlolndan 
Cytodex 1 Uzerinde Ureyen RK hUcreleri uzun zaman periyodunda 
sagllkll Ureme kinetini qosterdiler. 

MikrotaS1Ylcl kUltUrlerin monolayer kUltUrlerden daha ekonomik 
olduau soylenebilir. 

REFERENCES 
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MODULAR REPRESENTATIONS OF PSL(2,7)
 

IN CHARACTERISTICS 3 and 7. *
 

M. I. Khanfar (l) 

In [6], the ordinary representations of the unimodular 
group G = PSL(2,7) of dimensions 3,6,7 and 8 were explicitly 
constructed over the complex field. The aim of this work is 
to investigate the modular representations of G over finite 
fields. This paper determines the irreducible modular repre­
sentations of G in characteristics 3 and 7. 

Key words: Modular representation, Characteristic, Decompo­
sition matrix, Blocks. 

1980 Subject Classlflcation: 20C20 

(. INTRODUCTI ON 

Most of modular representation theory is due to R. Brauer. His 

results were stated in the language of modular charac­

ters in ( [I] , [2] ). 

1.1.DEFINITION. Let G be a finite group and p a rational prime. An 

element g in G is p - regular if its order is relatively prime to 

p, and p - singular if its order is a power of p. 

Sinceall conjagateelements inGareof the same order,.' we speak 

of the p - regular conjugacy classes of G. 

The following two established results ([3 ],[7 I) will be applied 

wi thout further ret erence , 

-----_.-------- ._- -- . .. - -- _. - ._-- ' ..
 

(1 Matl:«ti :", 1)'>1'\., i-..itlif f".l"lUj,\ZJZ iiIl1'/., .Jeudan , SAUDI ARABIA.
 

* This work wa~ suppcirted by a grant t'rom Yarmouk University. 
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(l) The number of absolutely irreducible modular representations 

of G in a modular field of characteristic p is equal to the number 

of p - regular conjugacy classes of G. 

(2) Let e oe an absolutely ir-reduc ib l e ordinary representation 

of G. If pm is the highest power of p dividing the order of G and 

the degree of ~,then ~ remains absolutely irreducible as a modular 

representation of G in characteristic p. 

The following proposition is needed and can be applied in any 

characteristic p t 2. 

1.2. PROPGSITlON. Let K be an algebraically closed field of charac­

teristic pt2. Then G = PSL(2,P) has no faithful representation of 

deqree 2 in K [7] 

Proof. Let f G -->GL(2,K) be a monomorphism. Then 

det : f(G) ---~K* is a homomorphism onto a finite subgroup of K*. 

All such subgroups of K* are cyclic. 

If p>3, then f(G), being 'simple, is a subgroup of SL(2,K). 

If p=3, then G=A4 and so at least det (f(G)) ~{l,-l}. 

Choose an involution x in G such that f(x) is in SL(2,K). Putting 

f(x) in rational canonical form. we find that f(x) is similar to 

l 
' and therefore f (x) = But then th i s 

• -I.L 'J 
implies that f(x) is in the center of the simple group f(G); a 

contradiction. 

2. REPRESENTATrONS IN BLOCKS 

Wp cons i der a metnod of d i-.; iIHI:'U\C] the rspresenta t i ons ot a 

fl:II:P qruu:.,G i nt o b l ock s I 1'3) 141, [5J). Let K be an algeb­

ra ic number t ield which IS d S[.J11 LLillg field for' G, and R the !'in\] 
of algebraic integers in K. Let S be d prIne ideal in R containing 
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the unique rat i onal prime p. Let R be the ring of S - integrals 
elements in K. Then R is a principal ideal ring with quotients 
field K; and R=R/ = R/ is a ~odular field of characteristic p 

R s s 
( [1] , [3] , [4] ). Theory of integral representations of finite 

groups asserts that, every irreducible representation of Gover K 

can be written as an integral represent.at i on of Gover R ' s 
-

Let Ci be the sum of the elements in the conjugacy class Ci of 

G, i = I, ... , n. Let e , be all Irreduc i ble integral representa­1 _ 

tions of G, and xi the character' of t i . The sums Ci form a K-basis 

for the center of the group ring KG as well as a K-basis for the 

center of KG. !hus each Ck commutes wi th each gin G, and therefore 

the matr i x e, (Ck) commutes with the matr-Ix e. (g) for each LSchur's1 _ 1 

Lemma asserts that each t i (C is a scalar matrix; that isk) 

(*) t i (Ck) = f i (C k) I, I < k < n . 

-
Since t i is an integral representation, we have each fi(C k) is in 

R ' Taking traces in (*), we haves 

- ICkl xi (gk)
fi(C k ) = . <i k<n 

xi (l) 

Extending f to a map on the center of KG by linearity, we havei 

f i (Cj Ck) = f i (C j) f i (Ck) . 

We define Ti center (KG) ------~K by 

f i (Ck) = f i (Ck) , i < k < n 

Whel'e the bar denotes reduction modulo S. Two irreducible repre­

sentations t · and t of G be lonq t o [he same block iff T = T . 
1 J I J 

If t belongs to a block B, t her .r l ! !IJP\lilcjl,lt-> modu l er cons t i­i 
tuents of e . belong necessuri ly tu l50 

1 



, Ie 

2.1. DEFINITION. Let p be a rational prime, n a rational integer. 
We write v (n) e if pe divides nand pe+l does not divide n.p
 
Assume v (IGI) m.
p 
2.2. DEFINITION. The defect d of a p - block B is given by 

d = m - mi n {vp ( xi (l)) : ~ i in B} • 

Clearly each d?O. A P - block of defect 0 contains only one ir ­
reducible representation ~i whose degree is di visible by pm [I]. 

3. 7-MODULAR REPRESENTATIONS OF PSL(2,7) 

1 =The simple group G = PSL (2,7) = < «.8 I 0. 13:< =(<< ar:,,.(Q.4~j:l> 

of order 168=23 .3.7 has 6 conjugacy classes of elements; and there­
fore 6 ordinary irreducible characters given below. 

3.1. TABLE.
 

Igl·
 

IC( g)l
 

Xl 
x2 
x3 
x4 
Xs 
x6 

Irreducible Characters. 

I 2 
. 

4 3 +7 7 ­

~3.7 23 22 3 7 7 

I 1 1 1 I 1 

7 -I -1 1 0 0 

6 2 a 0 -1 -1 

8 a a -1 I 1 

3 -I 1 0 z z 
3 -1 I a z z 

where Igi = order of gEG; IC(9)1 = order of centralizer of 
-1+i ../7

g in G ; z 2.---- ­0: - ......

Ghas tour' 1 l'eLjuldl' conjuqat.y c lasses and hence four' absolut ly 

trredui.Iul« j - modular represent.at i ons • 1he ordinary irreduc ib le 

representations of degrees I and 7 remain i r reducib Ie as modu lar 
representations of G of characteristic 7. 

.. t 
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By Proposition 1.2 the two ordinary irreducible representations 

of degree 3 are irreducible as modular representations of 

G in characteristic 7; but of course these representations are 

equivalent in this characteristic. 

To determine the fourth irreducible 7 - modular representation 

of G, we detemine first the blocks of the ordinary irreducible 

representations of Gand the defects of these blocks. To distribute 

these representations into 7 - blocks, we form the table: 

21 42 56 24 24 

7 -4 -4 

- -7 3 3 
f i (Ck) = -7 14 46 46 

-7 14 46 46 

-3 -6 8 

o=-1+iJ7.
 

Reducing the table modulo a prime ideal containing 7, we obtain:
 

3 3 

3 3 
3 3 

3 3 

3 3 

-3 

Thus there are two 7-blocks: 

B {I,3,3,6,8,} of defect I, andI= 

{7} of defect 0;B2= 

where the representations in each block are indicated by their 

degrees. If n is the degree of the unkown irreducible 7 - modular 
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representation of G, then 1,3, n are in B The possible valuesi. 
for n are 4,5,6,8 . Since B is of defect I, each entry in theI 
decomposition matrix D associated with B is either 0 or 1([2],[3] )l 1 
It follows that the only possible value for n is 5 and 01 has the 

form: 

mod. deg. 5 3 

ord. deg. 1 

6 

8 1 

3 1 
3 1 

Hence the decomposition matrix D of G is of the form: 

= I 1] .D2 

In fact the ordinary 6 - dimensional representation of G obtained 

in [6] , when reduced in characteristic 7, fixes the hyperplane 

<ej - e l > • If we restrict to this hyperplane, 

then with respect to the"basis {e - e ' j = 2, .••. 6 } j l 

we obtain: 

2 1 1 1 --1 -1 -1 -1 -I ­

I 2 I 1 1 
cr __> 1 1 2 I 'a-> 

1 I I 2 

1 1 I I 

4. 3- MODULAR REPRESENTATIONS OF PSL(2,7)
 

G = PSL(2,7) has five 3 - regular' conjugacy classes of elements,
 

..
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and hence five irreducible 3 - modular representations. The ordinary 

irreducible representations of Gof degrees 1,3,3,6 remain absolutely 

irreducible as modular representations of G in characteristic 3. 

Following the methods of the preceding section, we find that the 

ordinary irreducible representations of G are distributed into four 

3 - blocks: 

Bl = { 1,7,8 } of defect 1, 

and B = {3} , B = {3} , B4 = {6} of defect 0;2 3 

where the representations in blocks are indicated by their degrees. 

Let the unknown irreducible modular representation of G be of 

degree n, Then n is in B The possible values for n are then 4,5,l• 
7,8. Since B is of defect I, each entry in the decomposition matrixl 
01 associated with Bl is either 0 or 1. It follows that the only 

possible value for n is 7; and thus D is constructed as follows~l 

mod. deg. 7 

ord. deg. 1 

7 

8 

Hence the decomposition matrix 0 of G is of the form: 

o 
-02 

o = 
o 

where 0i [1], i=2,3,4. 

aZET 

Karma~lk saYllar cismi Ozerinde boyutlarl 3,6,1 ve 8 olmak u­
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zere bir G=PSL(2,7) unimcdul ar qrubunun adi temsi l Iert yapr lmi st i r 
[6]. Bu ~a11~manln amaCl, sonlu cisim1er Ozerindeki G grubunun mo­
dLirer temsillerini arast i rmakt u-. Bu arest irma 3 ve 7 karakt.er-t s­
tikleri i~in G nin indirgenemeyen temsi11erini be1ir1er. 
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ON THE CLASS OF PARANORMAL OPERATORS 

~.Kutkut (1) 

In this article we study some properties of the class of 
paranormal operators on an infinite dimensional separable 
complex Hilbert space H. We prove the following. 

1. The tensor product and the direct sum of two paranormal 
operators are paranormal. 

2. The set of paranormal operators is strongly (uniformly) 
closed and arcwise connected. 

3. Every paranormal weighted shift is hyponormal. 

4. If T is a paranormal weighted shift on H then Pn(T) is 
paranormal on H(but P (T) may not be hy ponor-mal ) . for any

n
polynomial P . 

n 
Key words: Paranormal operators, weighted shift, Hy~onor­
mal operator. 

1980 Subject ClassIfIcation: 47B20 

1. INTRODUCTION 

We consider an infinite dimensional separable complex Hilbert 

space H. We denote by L(H), all bounded linear operators on H. As 

in [1] , an operator T E L(H) is said to be paranonnal if IITxl12s 

IIT2xll, for all unit vectors XE H, ( or equivalently 

IITx!IZs 11TZxll.llxll, for' every xEH). Recall that an operator 

hL(H) is said to be hyponorme l , if IITx Ii ~I rr'~x II, for' every x £ H 

(or equivalently T*T,:T T"'). An uperdtl'~ 1 LL(H) is called nonnaloid 

(1) MathematICS Uept.,King Abdulazlz UnIV., Jeddah, SAUDi ARABIA. 
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4 

if 

I/TI/= sup {1(Tx,x)1 : XEH, IIxll = 1} = w(T), 

where w(T) = is the numerical radius of T. Istratescu, Saito and 
Yoshino [5] studied some properties of paranormal operators. They 
proved that every hyponormal operator is paranormal, and every 
paranormal operator is normaloid. In [5] , it is also proved that 
the inverse of an invertible paranormal operator is paranormal. 

In 1980, Chaurasia and Ramanujan [I] studied more properties 
of the class of paranormal operators on Banach spaces rather than 
Hilbert spaces. In [I] , it is proved that every isometry is pa­
ranormal. 

In this article we study further properties of paranormal ope­
rators. Let P(H) denote the class of paranormal operators on H. 
We prove that P(H) is arcwise connected and strongly (hence uni­
formly) closed. It is proved that the tensor product and the di­
rect sum of two paranormal operators are paranormal operators.An 
operator T E: L(H) is said to be a weighted shift if there is a 

e. 

sequence (~n) of complex numbers and an orthonormal sequence (en) 
in H, such that T en=~nen+l; if n is. an integer, T is called a 
bilateral weighted shift and if n is restricted to the positive 
integers, Tis called a unilateral weighted shift; the sequence 
(an) is called the sequence of weights. 

We should remark that there Is no loss of generality in assu­
ming that the sequence of weights (~n) consists of positive real 
numbers, since two weighted shifts with weight sequences (~n) ,(Bn) 
(resp.) are unitarily equivalent if, and only if,l~nl = IBnl for 
every integer n, (see Sh ie Ids [7 ] ), so in what fa 11 ows the sequence 
of weights is assumed to be of positive real numbers. In [8], it 
IS proved that every weighted shift with a non-decreasing sequence 
of weight:, 1" d hYJ'llnUI1TldI upel'dtl11·. Thus every weighted srurt 
with Ilufl-ueUed"ITlQ "elluence ut weIghts is pe renorme l . We [wove 
that every paranormal weighted shift is hyponormal. We gi ve an 
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example of ~ paranormal operator which is not hyponormal. Shields 
[7] asked whether Pn(T) is a hyponorma l operator for a hyponormal 
unilateral weighted shift T and every polynomial P . In 1984, Pengn . 
Fan [6] gave a negative answer to Shield's question; he construc­
ted a hyponormal unilateral weighted shift T for which Pn(T) is 
not hyponormalfor a given polynomial Pn. Here we prove that Pn(T) 
is a paranormal operator for a paranormal weighted shift T and 
any polynomial P In fact t(T) is a paranormal operator for a pa­n. 
ranormal weighted shift T and any function t, which is analytic on 
the spectrum otT) of T. 

Z. RESULTS 

To be precise let HI~ HZ denote the completion of the tensor 
product of the two Hilbert spaces HI and HZ. If Te:L(H I), Se:L(HZ) 
then the tensor product TiS of T and S belongs to L(H I i HZ). Con­
cerning the tensor product we prove the following. 

2.1. PROPOSITION. If T,S are paranormal operators on HI,HZ(resp), 
then TiS is paranormal. 

Proof. If x,y are unit vectors, then x ~ y is a unit vector and 
we have 

l! ' i S xi y lIZ = IITxIlZ. IIsyllZ 5 IITZxll.IISZyll 

511 T2 i sZ x i y II= II (T is)z x i y" , 

which implies the conclusion of the proposition. 

2.2. PROPOSITION. If TE L(H I), S E: L(HZ) are paranormal, then the 
direct sum T ~ SE: L(H I i HZ) is paranormal. 

Proof. If x = Xl ~ Xz is a unit vector in HI i HZ then, 

liT ia SX" Z "I iT xI liZ + lIS XzliZ 
~ . . 2 

':: 111 ( x J I I • 1 I x I 1\ -+ lis xzll . 11 Xz II ~ 

" .,e 
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s:	 (IIT
2
xI 1/+ Ils2x2 II) !Ix II 

IITz6aSzxll=IHT6aS)zxll,~ 

which shows that T ~ S is paranormal. 

2.3. THEOREM. The set P(H) is strongly (hence uniformly) closed and 

arcwise connected. 

Proof. Let (Tn)C.P(H) be a sequence such that (Tn) converges 

strongly to TE: L(H). Then IITnx-Tx II ~ 0 as n ~"', for any vec­

tor x £ H, and in particular for Ilxll = I, 
2 1

II T x II ~E: +IITnX II~ E: + II TnX II "2 , 
for	 n large enough. 

Si nce a product- of operators is sequent i a lly cant i nuous (see 

Halmos [3] , problem 93 page 57), in the strong operator topology 

T~ converges strongly to T2• Thus, 

l/Tx 11-:;£+ IIT
2
x l l"2

1 
1n 

'S e + (£ + IIT2xII) "2 
and since e is arbitrary, IITxllZs11T2xll, which means that hP(H); 

P(H) is strongly closed. Since every uniformly convergent sequence 

is strongly convergent one concludes also that P(H) is uniformly 

closed. 

TCY show that P(H) is arcwise connected, it is enough to show 

that A.TE: P(H), for every scalar A and T£P(H).Now let IIxll=l, 

and T£P(H), then 

II ATx 11 2 =A ~ IITx liZ < A~lIT2x II 
$( A2~211T2xl ,Z ) ~ 

s 11(;~,T)2xll. 

This conp le tes the uroot ot the theorem, The t nl l owi no propcs i t ion 

shows that eVf:"y ope ra tor uni t ari ly equiv ..lent to a perenornat o­

perator is paranormal. 
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2.4. PROPOSITION. Let TE P(H), then for any unitary operator u on 

H, uTu*EP(H). 

Proof. If TEP(H). u is a unitary operator on H, then for a unit 

vector	 x EH, we have x = uy for some unit vector y E H. and 
2

II uTu*xl1 2 =IITu*xI1 = IITyl12 
2u*xl I~IIT2YII =1 IT


-::lluT2u*x 11 sl !(uTU* )2x 11,
 

which is as desired. 

2.5. PROPOSITION. If T. SE P(H). S is an isometry which commutes 

with T, then TSEP(H). 

Proof. If x is a unit vector in H, S is an isometr~ then y=Sx 

is	 a unit vector and one obtains
 
2 2 2y


IITSx 11	 = I/Ty 11 < IIT II 

-:: IIT2Sxli 2Sxl I= I IST

-::1~(TS)2xl" 

since S commutes with T, i.e., TS is paranormal. 

The following proposition is concerned with the integral powers 

of a paranormal operator. 

2.6. PROPOSITION. Let TE P(H), then for every positive integer n, 

TnE p(H) . 

Proof. If T is paranormal then it is norrnaloid (see [5] ) which 

is equivalent to saying IlTnxll = llTx lin, for every positive inte­

ger n, sincellTxlf-:: I\T2xll for any unit vector XE H, one conclu­

des that 
IITnxl1 2 2)n<IIT2xll n 

= (I\TxI1

IIT2nxii < = II(Tn)2 x l l . 

which means that Tn is	 paranormal. 
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3. WEIGHTED SHIFTS
 

The following example shows that the class of hyponormal opera­
tors is a proper subclass of the class of paranormal operators. 

3.1. EXAMPLE. Define the weighted shift T on H, using the orthonor­
mal sequence (en) of H, by the equality 

Ten ={en+ l• n $ 2, 
2en+l , n <: 3 • 

This weighted siift has the following properties 

1.	 The operator T is hyponormal, since the sequence of weights is 
nondecreasing. 

2.	 In particular T is paranormal. 

3.	 Let P(z) = z + ai, 0 < a < v';, then p(T)=T+aT2 is not hyponor­
mal; for the proof (see [6J ). 

4. We prove that PIT) is paranormal. Indeed, elementary computation 
shows that: 

e +l + a e +2 , n ~l,n n
e +l +#2a e +2, n = 2,n n
2 e +1+ 4a e +2, n» 3. n n

This impl i es that 

f +i n-;:l, 
2=IIP(T) e I1 1 1 + 4a2 n =2,n

4 + 16i n >3. 

The operator p2( T) is given by, 

2 
en+3 + a en+4 ' n -;: -I,en+2+2a 

2p2(T)en~ {	 en+2+2a en+3 + 2a en+4, n = 0, 

en en+3 + 4a 2 n = I,+2+4a en+4, 
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From which we conclude, 

2 4
+ 4a + a , n 'S-1 , 

i + 4a2 + 4a4 n 0, 

2(T)e 2 2+ 4
IIP 11 = + 16a 16a n 1,n 

4 + 64a2+ 64a4 , n = 2, 

2 4
16+ (16) 2i + (16) a , n e 3. 

4By comparing the value of IIp(T)e 11 and IIP2(T)enI12 one concludes n 
thatllp(T)enll2 ::;lIp2(T)eril ' which is as desired. 

3.2. REMARK. The restriction on a to be such that 0 < a < 4 is 

needed in [ 6] to show that P(T) is not hyponorma1 but it is not 

needed to show that P(T) is paranormal. 

3.3. EXAMPLE. Let T be the weighted shift defined on (en) by 

i , n <0en+ l 
T(e = n) { 

, n? O.en+l 

It is clear that T is hyponormal and therefore it is paranormal. 

Hartman [4] showed that the spectrum o(T) of T is not a spectral 

set of 1. Recall that ~ subset X of the complex plane is said to 

be a spectral set of T if 0 (T) C X and for any rational function 

,twith poles off X we havell«T)II<~~~I~(Z) I (=II~IICXl)' 

This example shows also that it is not necessary for the spectrum 

of a paranormal operator to be a spectral set. 

The following proposition shows that every paranormal weighted 

shift must be hyponormal. 

3.4. PROPOSITION. If T is a paranormal weighted shift, then its 
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sequence of weights (an) satisfies the inequality 

Proof. If (en) is the orthonormal sequence on which T is defi­

ned, then liTenl12 = a~, and IlT2en II=an.an+1 and since T is para­
2normal then a <a.a I'n - n n+ 

Example 3.1(4) is not only true for P{z) :: z + ai but it is 
true for any polynomial. This is shown in the following. 

3.5. THEOREM. Let TEP{H) be a weighted shift, Let P(z) be a poly­
nomial of degree k. Then P{T) is a paranormal operator. 

Proof. Let (en) be an orthonormal sequence in H, (an) the weight 
sequence. If T defined by Ten =anen+ l is paranormal then an.:.an'~+l 

for every integer n. If P(z) is a polynomial of degree k, i ,e .• P(z): 
l+alz + a2i + + akzk, ai complex numbers, i::1,2 •...•k, then an 
elementary computation s~ows that, 

IIP{T)enI12:: 1 +lalI2a~ + la212a~+1 +•.• + lakI2a~.1i+l"~~+k 

and 
2{T) 2

I IP e l 1 :: I + 41al 12a~ +12a2 + al al 1
2 a~.a~+l + '" +n

+1 akl
2 
a~.a~+l •.•a~+2k· 

By comparing IIp{T)e 114 and IlpZ(T)enIIZ one concludes thatn 
IIp{T)e liZ :.11 pZ{T)enll. for every integer n, which shows that n 
P{T) is paranormal as desired. 

3.6. THEOREM. Let TEP{H) be a weighted shift. 1ft is any analytic 
function on the spectrum o(T) of T. then t{T) E P{H). 

Proof. Since t is an analytic function then there is a sequenCE 
of polynomials (Pk) which converges uniformly to~. By Theorem 3.! 
Pk(T) is paranormal for every k, By Theorem 2.3 the unifonn l i 
mit t(T) = u-lim Pk(T) is paranormal. 
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We	 conclude this article with the following 

3.7. THEOREM. If T, Se:P(H) are weighted shifts then T + S, TS£ P(Hl. 

Proof. If (~n)' (Bn) are the weight sequences of T, S resp; and 
(en) the orthonormal sequence in H, on which both are defined, then 

~~ '::'~n· ~n+l and B~'::'~n' Bn+l· For the product TS, we have 

IITsen,, 2 = a~+l . B~ while, II(TS)Ze l l = an+l.an+3.Bn.Bn+Z' forn
every integer n, therefore IITSe liZ< IPS) Ze II. Thus TS is para­

,	 n - n 
normal. For the sum T + S, direct calculation shows that 

and 

IlfT+S)2en I f ~ a~.a~+l + 2an·a~+1· Bn + 2a~. an+1 Bn+ l + 

Comparing the values of II(T+~)en If and II(T+S)2en I f, one conc­
ludes that 

for every integer n, which is the required conclusion. 

OZET 

Bu cal i snada sonsuz boyutlu ayr-i.l ebi l i r karmas ik bir H Hilbert 
uzayl uzerinde paranormal operatorlerin Slnlflnln bazl ozellikle­
ri Ozerinde c;all~lyoruz. A~agldakileri kanltllyoruz. 

1.	 lki paranormal operatorlerin tensor carp inn ve direkt topla­
ml paranormaldir. 

2.	 Paranormal operator-Ier in kUmesi kuvvetli (dUzgOn) kapel i ve 
yay baQlantllldlf. 

3.	 Her paranormal yOklenml~ kayma hiponormaldir. 



24 

4.	 T,H uzer inde paranormal yuk l enrni s kayma ise bu duromde , her 

P polinomu i~in Pn(T),H (izerinde paranormaldir (ama hipo­n
 
normal olmayabilir).
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ERGODICITY OF HILBERT SPACE OPERATORS 

M. Kutkut (1) 

In this article the following theorem is proved. 
Theorem: If T is an ergodic operator (in the uniform, strong 
or weak operator topology) on an infinite dimensional complex 
Hilbert space and F is a continuous multiplicative function 
then F(T) is ergodic (in the respective tooology). Th t e 
result implies that S T S-~ is er~ndic for any invertible 
operator S : the adjo Lnt, 'f*of 'f is ergodic. If T is subnor­
mal then the minimal normal extension N of T is ergodic. 
Moreover the dual S of a pure subnormal operator T is ergodic. 

Key words: H~lbert space, Mult~pl~cative function, Ergod~c 

operator 

1980 Subject Class~f~cation: 47A35 

I. I NTRODUCTl ON 

Let X be a Banach space, and L(X) the algebra of all bounded 

linear operators on X. totz in [3] introduced" the following defi­

nition of ergodicity. 

1.1. DEFINITION. Let GcL(X) be a multiplicative semi-group of opera­

tors. Denote by chG the convex hu11 of G. Then Gis sai d to be 

ergodic if the closure of chG has a zero element, i.e., there exists 

a projection operator P in the closure of chG such that PS = SP=P 

for every operator'S in the c Iosure of chG. If the closure of ch G 

" is taken in the uniform operator topology then G i s called uniforwly 
ergodic and if the closure of chG i s t aken In till-' str onq operator 

(t\, ~H&theinatl.cs Dept. I King Abdu Iaz rz Univ., Jeddah, SAUDI ARABIA. 
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operator topology then G is called strongly ergodic. If the underlying 

space is an inner product space then weakly ergodic may be simi larly 

defined. Denote these closures of chG by uchG, schG and wchG res­

pecti vely. 

1.2. DEFINITION. Let TEL(X), then T is said to be ergodic (in the 

unifonn, strong, or weak topology (for inner product space)) if the 

cyclic semigroup GltTn: n::O ,1,2, ... } is ergodic in the respec­

tive topology. 

2. RESULTS 

In this paper we study ergodicity of operators on Hilbert space. 

If H is an infinite dimensional complex Hilbert space, L(H) deno­

tes the algebra of all bounded linear operators on H. 

Let U be the unitary group on H. The unitary orbit U(T) of TeL(H) 

is defined by 

U(T)= {u T u* : u EU, u* :: adjoint of u l • 

The similarity orbit S(T) of TeL(H) is defined by 

S(T) :: ( s T S-l: 5 is invertible L 

Now, we are ready to introduce our results. 

2.1. LEMMA. If F is a 1-1 mul t ip l l cat Ive function, and TeL(H), such 

that F(T)eL(H) , then F induces a multipl icati ve function F between 

GT and GF(T)' which is one to-one and onto. 

Proof.	 Define F : GT -->GF(T)' by 

F(Tn) .= Fn (T). 

It is an easy matter to show that F is multiplicative, one-to­

one and onto. 

2.2. REMARK. F t 0, I	 , P : P is a prcj ect ion, 

2.3. LEMMA. The multiplicative function F defined in Lemma 2.1 is 
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extendable to a multiplicative function denoted by F (for simplicity) 
between ChGT and ch GF(T)' which is also one-to-one and onto. 

Proof. If AECh GT then there exist positive integers nl'··n~ nk 
and non-negative real numbers al, •.. ,ak:~i ai = 1 and A=~i aiT 1 

n . n. 
Now the extension of F is defined by F(A) = ~,aiF(T 1)=~, aiF I(T). 

m. 1 1 

If BECh GT then B = 3b T J, for some positive integers ml, ••. ,mj l 
and some non-negative real numbers bl, •.• ,b l whose sum is one, and 

ni +mjthus AB= f rai bj T , and since i 7j aibj = 1,AB EChGT that 
is, chGT is a semi-group (See Lotz [3] .p , 146). The function F 
is multiplicative, since 

n.+m. 
F(AB) = .z. a.b . F(T 1 J)

1 ,J 1 J 
n. m. 

. z . aI'b . F(T 1) F(T J)
1 , J J 

n. m. 
= z a. F(T 1)) ( 4 b . F(T J))

i 1 J J 

= F(A).F(B). 

It is not difficult to show that F is one-to-one and onto. 

2.4. LEMMA. If the multiplicative function F is continuous, then 
the function Fdefined in Lemma 2.3 is extendable to a multiplicative 
function (denoted by F) between the closure of ch GT and the closure 

of ch GF(T)' which is also on~-to-one, onto and continuous. 

Proof: In the um torm.rtopoloqy, if AE uch GT, then there is 
(Ai)cCh GT such that IIA:"Aill ~>O as i _>CD. Since F is con­
tinuous and multiplicative ChGF(T) and F(chGT) can be identified. 
By continuity of F, F(A i) converges uniformly to F(A) and we can 
define F: uch GT -----;>uch GF(T) by F(A) = u-lim. F(A i) , where 
u-Itm, means uniform limit. From the definition of F, it is clear 
that F is continuous on uchGT. 
Since F is one-to-one in Lemma2.3then by linearity, F is one-to­
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one on uch GT. If B f: ucn GF(T) , then there is a sequence (B i) -cn 
GF(T) such that (B i) converges uniformly to B. Since BiECh GF(T)' 

then there is Ai Ech GT such that Bi = F(A i) (because F is onto by 

lemma 2.3).Since F is continuous and one-to-one, it is invertible 

and thus (Ai) converges uniformly to AEuch GT, so that by the de­

finition of F, F(A) = B or F is onto. 

If A,B Euch GT then A=u-lim. Ai,B=u-lim Bi for(Ai),(Bi)cChG T" 

Since multiplication is continuous (and in particular sequentially 

continuous) in the uni form topology( see Halmos[ 2] , probl em 91,page 

57) we have, AB=u-lim AiB This implies that~i• 

F(A B)= u-lim F(AiB i) = u-lim F(A i). F (Bi) 

= u-lim F(Ai)u-lim F(Bi) = F(A) F(B), 

since F is multiplieative on ch GT by Lemma 2.3. Thus F is multip­


licative on uch GT.
 

For the strong topology, a s'imi lar argument can be gi ven, since the
 

product is sequentially continuous in the strong operator topology
 

(see Halmos [2] , problem 93 page 57).
 

Since the product is not even sequentially continuous in the weak
 

operator topology, (see Halmos[ 2], problem 93 page 57) we provide
 

the following argument to show that the extension F:wch GT ~wch
 

GF(T) is mUltiplicative.
 

It is known that if Ai -;> A weakly then AiB ~AB, BA i -"BA weakly
 

for any fixed operator B(see Halmos [2] problem 92 page 57).
 

If A Ewch GT and B Ech GT' then there is (Ai) in ch GT such that
 

(Ai) -.;. A, weakly and thus (AiB) -;:>AB weakly, as i -,,<Xl; and by
 

the continuity of F, (by the definition of F in the weak operator
 

topology), and since F is multiplicative on ch GT,
 

F(A B)=w-lim F(AiB)= w-lim F(A i ) F(B) 

=F(A). F(B), (2.1) 
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wher'e w-lim means weak-limit.
 

Now, assume that both A, BEwch GT, then there ext st (B i) in en GT:
 
B=w-l im Bi. Therefore AB i ~ AB weak ly as i ---7 ex> and AB Ech GT•
 
this implies that (by continuity of F in the weak topology):
 

F(AB)	 = w-lim F(A.B i) 
= w-lim F(A).F(Bi),by (2.1) 

= F(A) .F(B) • 

i.e.,	 F is multiplicative on wch ~T. 

2.5. THEOREM. Let TE L(H) be an ergodic (in the uniform, strong or 
weak operator topology) operator, then for a 1-1 continuous multip­
licative function F, for which F(T) E L(H), F(T) is ergodic. 

Proof. By Lemma 2.4, F induces a continuous mu lt i pl icati ve function 
denoted by F, (for simplicity) which is one-to-one and onto between 

the closure of ch GT and the closure of ChGF(T)' (in the uniform, 
strong, or weak operator topology). If P is a zero element of the 
closure of ch GT then F(P) is a zero element of the closure of ch 

GF(T)' (in the respective topology). Indeed, since P is a zero e­
lement, then PS = SP = P, for every S in the closure of ch GT. If 

A is an element in the closure of ch GF(T) there is S in the clo­
sure of ch GT such that A= F(S), since F is one-to-one and onto. 
Since F is also multiplicative one obtains, 

F{P).A=F{P).f{S)=F{P.S)=F(P) 
=F.{S.P) = F(S). F{P) 
=A.F(P). 

This implies that F{T) is ergodic.
 

We prove the following results as corollaries of the Theorem.
 

We should remark that the term ergodic is understood in the three
 
topologies unless otherwise mentioned.
 

2.6. COROLLARY. Let TE L(H) be ergodic. If S is an invertible ope­
rator on H, then ST S-1 is ergodic. 
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Proof. Define F:GT ~G -1 by F(Tn): S TnS-l• It is clear' that 
STS 

F is I-I, mUltiplicative and continuous (for any fixed operator S, 

see Halmos (2] problem 92). It is' also one-to-one and onto. By the 

Theorem F(T) : S T S-I is ergodic. 

2.7. REMARK. Corollary 2.6. means that if T is ergodic then every 

element in the similarity orbit S(T) of T is ergodic. 

2.8. REMARK. Since every unl t ary operator u is invertible and u-l=u*, 

the adjoint of u, it follows from Corollary 2.0, that u T u*is er'­

godic and thus, every element of the unitary orbit U(T) is ergodic. 

2.9. COROLLARY. If T £ L(H) is ergodic then the adjoint T* of T is 

ergodic. 
n 

Proof. Define F: G -:>GT*by F(Tn):T* which is a multiplicativeT 
isometry (one-to-one) and onto. Moreover, F is continuous (in the 

unifonn and weak topology but not in the strong,see Halmos [2 ] problem 

90 page 56). By the Theorem F(T) = T* is ergodic (in the uniform 

and weak operator topologies). 

Since, uch GT* c sch GT * C wch GT * , one concludes that schGT*has 

a zero element, i.e.T* is strongly ergodic. 

2.IO.COROLLARY. If T £ L(H) is ergodic, then F(T) is ergodic, for 

every analytic multiplicative function F, on the spectrum a(T) of T. 

Proof. It is not difficult to show that a multipl ication analytic 

function is one-to-one, onto, and continuous. (see lenati< 2.11).By 

the Theorem,· F(T) is ergodic. 

2.11. REMARK. If F(z) is analytic, where z is a complex variable, 

then 

F(z)= ~ anzll and F(z) F(z) = F(z2), thus 

( I a zn)(Ia zn) = Ia z2n 
o non 0 n 

I for some n
 
and this is true if a = and thus F(Z)=Zn.
{ ' n J otherwi se 
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2.12. REMARK. Corollary 2.:C:and the preced i nq remark imply that if 

T is ergodic then r'' is ergodic tor every positive integer nand 

thus every element in the cyclic semi-group GT is ergodic. 

For a subnormal operator T, let N be the minimal nonnal exten­

sion of T (which is unique up to unitary equivalence, see Halmos 

[2], problem ISS, page 101). Conway [1] showed that N can be writ­

ten as a two-by-two matri x with oper-ator entries. 

N= [~ 
where NE L(K), N is normal and Kis a Hilbert space such that K=HiH I • 
If the decomposition K=HliH is considered then the adjoint N*of N 

is given by 

A*l 
T*J 

The operator T is said to -be pure subnormal if T is subnormal 

and neither A nor Tis norma 1. 011 n( [4] Lemma 5.3) has observed 

that T is pure subnormal if, and only if, N*is the minimal normal 

extension of S, and S is called the dual of T. 

2.13. COROLLARY. Let T EL(H) be an ergodic subnormal operator. If 

N is the (unique) minimal extension of T, then N is ergodic. 

Proof. If f is an analytic function, then it is proved in Conway 

Il l that f(N) is the minimal normal extension of f(T). Using the 

decomposition mentioned above, 

f (T) 
F(N)= 0[ 

where N is defined on H i HI. 

In part Icu lar let f be multipl icaUve and ana.lytic endsc, b;Y'~r*-i;' 

. 2.11, f(z)= zn, for some n.DE!fine themulttplicdti~e·\'C06t:·, 

funetion r. Gr ~ ~~f(~~"oi~eti"i,"J"d 
..... 
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the minimal normal extens ion of Tn, F is one-to-one and onto. By 

the theorem. N=F(T) is ergodic. 

2.14. REMARK. SInce N is unique, by symmetry the proof of Corollary 

2.13 implies that if N is ergodic then T is also. 

Finally, we arrive at the following result concerning the dual of 

a pure subnormal operator. 

2.15. COROLLARY. If hL(H) is a pure subnormal operator, and if S 

is the dual of T, then T is ergodic if and only if S is ergodic. 

Proof. Let N be the minimal normal extension of T, then (by O­

lin's result (4] ) the adjoint tf is the minimal normal extension 

of the dual S of T if, and only if, T is pure. Thus if T is ergo­

dic then by corollary 2.13, N is also ergodic. By Corollary 2.9 N* 

is ergodic, and by Remark 2.14, S is ergodic. By the symmetry of 

the proof we have if S is ergodic then T is ergodic too. 

bZET 

Bu \all~mada a~agidaki teorem kanltlanml~tlr. 

TEOREM. T, bir sonsuz boyutlu karma~lk Hilbert uzaYI uzerinde 

(duzgun, kuvvetli veya zaylf operator topolojisine gore), bir er­

godik operator ve F carp imsa l surek l i bir fonksiyon ise ayru topo­

lojiye gore F(T) ergodiktir. Boy lece herhangi b i r terslenebilir S 

operet.oru i c i n STS- 1 ergodiktir; T nin T*eki ergodiktir. T alt nor> 

mal ise T nin minimal normal qeni s Iemesi N erqod i kt i r , Ostelik, bir 

pur alt normal T 0peratorunun S duali ergodiktir. 
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ON THE COEFFICIENTS
 
OF CERTAIN MEROMORPHIC FUNTIONS
 

The aim of this work is to obtain the sharp bounds for 
the coefficients of the functions belonging to the class of 
meromorphic functions which are analytic in o<lzl<l. 
Key words: Analytic function, 
function of order a . 

Meromorphic function, Starlike 

1980 Subject Classification: 30030 

1. INTRODUCTION 

An analytic function 
1 2g(z)=-+b 1Z+b2z +... 
z 

is said to be starlike of ordera ,(O~a<1) in the punctured disc 

K={z:o<lz\ <1} if and only if 
Re {-zg'(z) }>a 

g(z) 

for all z in the unit disc E={z: IZ1<1}. 
Let F be the cl ass of, functions u 

1 2
f (z)= -z- + a1z-e2z +... 

which are analytic in K and satify the condition 

zfl(z)zf'(z) +1 1<1 u ( -1,I (0~ 0::;1) .z E E .•• ( 1. 1 ) 
g(z) 9 z) 

(1) Hacettepe Univ.,Fac. of Sci., Hath. Dept., Ankara, TURKEY. 
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where 
1 2g(z)= --z-- + b z+b2z +... 

is analytic and starlike of order ~ in K. 
Owa[3J has obtained some coefficient relations for the class Fu 

taking 
00 n 

f(z)=z+ n~2anz 

analytic in the unit disc E, 

g(z)=z- 'f b z" , (bn~O)
n=2 n 

analytic and starlike of order o i n E. 

A special subclass of Fu was studied by Kaczmarkski [1]. 

Pommerenke [4] has obtained the relation 

Ibnl~ 2(1-0.) n=1,2,... . (1.2)
n+1 

for the meromorphic function 
1 _ 2g(z)= -Z + ...+b 1z+b2z 

which is starlike of order 0. in K. 

In this paper, using this result we obtain the coefficients re­

lation for the class Fu ' 

2. RESULT 

2.1.	 THEOREM. If f(z)EF u and Re akbk~o for k=1,2,3, ... (n-2) then 

2(1-0.)
n I an k1+u+ ,n~1 •

n+1 
The bounds are sharp. 

Zf I (z) -1 J ... (2.1)
g(z) 

+•.• and Iw(z)! <1 in E. On substituting the 

f(z), g(z) and w(z) in (2.1) we have 
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1+u -- +
Z 

kI1 [-(1+U)+ k~1 (u k a (2.2)(ka k+bk)zk+1= k-bk)l+1]W(z)
... 

Equating coefficients of z2 and z3 on both sides of (2.2) 

we get 

and 

~ -(1+u)C2a2+b2 3" 

Using IC21~1, IC31~1 and from (1.2) we obtain 

I a 11~la 1+b11 + I b11 ~ 1+u+1- ~ ... (2.3) 

and 
2(1-~) 

... (2.4)3 

Equating the coefficients of zn (n>2) on both sides of (2.2) we get 

... -t u(n-2)a _ ] C •. :(2.5)n 2-bn_2 2 

-. From (2.2) and (2.5) we obtain 

n-2 . .k+1. kCD.. 

:[ -(1+u)+ k~1 (u k ak-bk)z ] w(z) + k~n+2 dkz .•• (2.6) 

CD CD •k+1 k 
Since k~n+1 (kak+bk)z = k~n+2 [(k-1 )a k_ 1-bk_1] z 

dnd 1rom (2.6) we have 

(2.7). 
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Us i ngIw(z ) 1<1 in E and Parseval identi ty(L2J,p: 100) on both sides 

of (2.7) we obtfin 

n I ' 2 2(k 1) 2 . r < (1+u)2 +k~1 kak+bk ; . r + + k~n+2 jekl 
2k 

. •. (2.8) 

If we let r --->1, from (2.8) we have 

n 2· 2 n-2 
k~1 !kak+bkl ~(1+u) + k~1 I uk ak-bkl 2 •.• (2.9) 

or 

2 
- j(n-1)a _ _ 1 •.• (2.10)n 1+bn 1 

Since o~u~1 and Re ak5 ~ 0 (k=1 ,2, •.• (n-2) it follows thatk 

nan+bn 1~ 1+u •.. (2.11) 

From (1.2) and (2.11) we have 

nlanklnan+bnl +Ibnl-:S 1+u+ 2~:;a) , n=3,4,5, ...... (2.12) 

Hence from (2.3), (2.4) and (2.12) we obtain 

n ja 1<1+u+ _2..U~) for n=1 ,2,3, .•. 
n ..... n+1 

Now let us show that the bounds are sharp. 

We take 
zf I (z ) _(1+z n+1) 

= g(z) 1_uzn+1 

and 
2 ( 1-0.) 

, 1)q(z) (1+z l l+ I ii 'I 

, ..
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starlike of order ain K and 

[ 

Zf l (Z) 
. 9 (z) 

Uzf I (z ) 
g(z) 

It follows that f(Z)E F 
u 

On the other hand , 

_(1+z n+1.) 1 n+1)~~
Zf I ( Z ) = ----'------.,.---'- ( 1-z n+ In+1 Z1-uz 

has the expansion 

n(1+u+ 2( 1- a )zf'(z)=- ~ z -n+ 1 

and we have 
2(1-a)

n janl= 1+u+ n+1 

Hence the proof is complete. 

OZET 

g(Z)=~+b1Z+b2Z2 + fonksiyonu K={z:O<lzl<1} kUmesinde 
a-mertebeden y r ld i z i l olmak Uzere, E={ z:lzl<1} de 

zf I (z ) 1 I I zf I (z ) 1I (O~u~ 1) I -9T"2T- + < u. ---g{Z) - - ­

ko~ulunu ger~ekleyen ve k da analitik olan 

f(z)=z1 2 + .,.+ a1z+a2z 
fonksiyonlar i nm ailesini F i le qostere l i m. Bu cal i smada F aile­u u 
sine ait olan f(z) fonksiyonlarlnln katsayllarl ile ilgili 

nl ank1+u+ 2~:1a) 

bi~iminde kesin Slnlrln varllgl gosterilmi~tir. 
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A CHARACTERIZATION OF UNITS IN ZS4
 

A. VI Imaz( 1) 

In this work we characterize the units in the integral 
group ring ZS4 by using their images in certain general linear 
groups under the distinct inequivalent irreducible 'repre­
sentations of the group S4' The group of units in ZS4 Of a­
ugmentat ion 1 is shown to be isomorphic wi th a certain 
subgroup. of GL(2,Z)~GL(3,Z)~GL(3,Z) . 

Key words: Group, Ring, Representation, Unit, Character
 
1980 Subject Classification: 16A26
 

1. INTRODUCTI ON 

Let U(ZG) denote the group of units of the integral group ring 

ZG of a group G over the ring Z of integers. Hughes and Pearson 

[4]and Allen and Hobby[ 1] gave characterizations of U(ZS3) and 

U(ZA4), respectively. Milies[3]did the same for U(ZD4). Dennis 

[6] and Sehgal [5] pointed to the need for additional work with
 

some small groups, inc ludi ncdetermi nat ion of the units of the ra­


tional group ring QG. In this article we restrict ourselves to in­


tegral group rings and obtain a characterization of U(Z54), where
 

S4 is the symmetric group,of degree 4.
 

Let V(ZG) denote the units raig i in ZG which have coefficient sUm
 

The technique used by Hughes and Pearson consists of making ra i=1.
 
use of the distinct irreducible inequivalent representations of 53
 

to obtain a 6x6 matrix P that describes a faithful representation. 

(1) Hacettepe University, Faculty of Science, Ankara. TURKEY. 
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Q 

e :V(ZS3) -/" e(V(ZS3))CGL(2,Z). 

When r=LaigiEZs3, the entries of e(r) are obtained from the matrix 

product ap=B, wherea=[a la 2... a J is the row-matrix of coefficients of
6

r. Finally, by computing the inverse matrix p-l and solving the linear 

system of congruences obtained by requiring that a=f,p-l have entr-i es 

in Z, they obtained necessary and sufficient conditions that descr-ibe 

the matrices in GL(2,Z) which belong to e(V(ZS3)). 

2. RESULT 

Just following this method, we use the inequivalent irreducible 

representations of the group S4 to find conditions determining the 

elements of U(ZS4). The group S4 can be generated by the cycles a=(12) 

and b=(234) which are subject to the relations 
2=b 3=(1) ab2=(ba)3.a and 

We agree always to list the elements of S4 in accordance with the 

conjugate cla',',~s In the tol lodm 

~(12)=a =gi 

(13)=bab2 
=g3 

(14)=b2ab 
=g4 

(23)=abab2a 
=g5 

(24)=ab 2aba 
=g6 

(34)=ab2abab2 
=g7 

(1234)=ab =q16 
(1243)=ab2 

=g17 

(1324)=bab =CJ 18 
(1432)=b2a 

=g19 
(1342)=ba =g20 
(1423)=b2ab2 

=g21 

order: 
. 2 
(123)=bab a =g8 

(124)=b2aba 
. =g9 

( 134)=aba =glO 
(234)=b =g11 
( 132)=abab2 

=g12 
(142 )=ab2ab 

=g13 
(143)=ab 2a 

=g14 

(243)=b2 
=g15 

( 12 )(34 )=(bab)2 

( 13 )(24) =(ab )2 
[ (14)(23)=(ab2)2 

The group S4 has five inequivalent irreducible representations 
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P1 ,P2,P3,P4 and Ps of degrees 1,1,2,3 and 3, respect ive l y; P1 being 

the 1-representation and P2 the representation assigning to each 

cycle its sign. For ease of computation we choose the representations 

P3,P4' and Ps slightly different from those arising naturally from 

Young diagrams: 

P1 (a) = 1 P1(b) 

P2( a) 

P3( a) = 

-1 

=I~A ~ 

P2(b) 

P3(b) B G -J-1 

1 

.4(a) : C : ~ a 
-1 ~ 

P4(b) 0 ~ a 
a n 

a 
1 

PS(a)=-c= 
'a
~O 
-1 

a 
1 
a 

-~ .s(b) : D : ~ a 
a ~ 

Let P1 Q) P2Q) P3Q) P4Q)PS denote the direct sum of the i rreduc i bIe 

representations of 54' When gE54, p(g)=X* is a 1Ox 10 matrix with 

blocks on the main diagonal as follows: 

x1- -x2
 
x
 0 

­

x43 x .. (2.1)X* :: "s 6 
x xx7 s 9 

x10x 11 x12 
x13 x14 x 15 D 

3 

n 
x16 x17 x18 
x19 x20 x21 
x22 x23 x24 

, ­
' ­

vk lj~e K,X"X dlld X to dpII()ll', IP',pl'ctlvely, tile d i aqona l 
2 3 

mdtl'l' wltll x"X;; (ill tIll' ma i n dld'J':lldi: 1111 /x'c' fild:' j, wt)(;, (' Plit· 

ru: !Ii' '3'x tilt, .:1>-.1 IllJllIA Will,~'-' eut.r t es dre x7.x S •. ·.,4,x 5"u, 
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~15 and the 3x3 matrix whose entries are Xl?"'"x16' x24· 

The products in S4 will be computed by cycling from the dght; 

e.g: (12)(134)=(1342). Select the elements giES4 in the given or­

d~r and let Xi denote the 24-dimensional row-vector corresponding 

to p (g ). The components of x . const i tute the i th row of the follo-
I I 

wing 24x24 matrix: 

111001100010001100010001 
1-1 0 1 100 0 1 0-1 0 1 000 0-1 0 1 0-1 0 0 
1-1 1-1 0-1-1 0 0 0 0 1 010 1 0 0 0 0-1 0-10 
1-1-10-1101010000-10-10-100001 
1-1 -10 -1 1 0-1 0-1 0 0 0 0- 1 0 1 0 1 0 0 0 0 1 
1-1 1""1 0-1-1 0 0 0 0-1 0-1 0 1 0 0 0 0 1 0 1 0 
1-1 01 1 0 0 0-1 0-1 0-1 0 0 0 0 1 0 1 0 1 0 0 
1 1-1 :1-1 0 0 0-1 1 0 0 0-1 0 0 0-1 1 0 0 0-1' 0 
1 1 0-;1 1-10-10 0 0 1-1 0 0 0-10 0 0 1-1 0 0 
1 1-1 '1-1 0 0 0 1-1 0 0 0-1 0 0 0 1-1 0 0 0-1 0 

P= 1 , 0-,1 1-, 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 
1 1 0-1 1-10 1 0 0 0-1-1 000 1 0 0 0-1-1 0 0 
1 1 1 1-1 0 0 0-1-1 000 1 0 0 0-1-1 000 1 0 
1 10 -1 1-1 0-1 0 0 0-1 1 0 0 0-1 0 0 0-11 0 0 
1 1-1 1-1 000 1 1 000 1 000 1 1 000 1 0 
j'~ 1. 1-'1 0-1 1 0 0 0 0":'1 0 1 0-1 0 0 0 0 1 0-1 0 
1-1-1 IJ-1 1 0 1 0-1 0 0 0 0 1 0-1 0 1 0 0 0 0-1 
1-1 0 1 1 0 0 0-1 0 1 0 roo 0 0 1 0-1 0-1 0 0 
1-1 1-1 0-1 1 0 0 0 0 1 0-1 0-1 0 0 0 0-1 0 1 0 
, -1 -1 0-1 to -1 0 1 0 0 0 0 1 0 1 0-1 0 0 0 0-1 
1-1 0 1 1 0 0 0 1 0 1 0-1 0 0 0 0-1 0-1 0 1 0 0 
1 1 1 0 0 1-1 0 0 0 1 0 0 0-1-1 0 0 0 1 0 0 0-1 
111 0 0 1 1. 0 0 0-1 0 0 0-1 1 0 0 0-1 0 0 0-1 
1 1 1 0 0 1-10 0 0-1 0 0 0 1-1 0 0 0-1 0 6 0 1 

( 1) 
(12) 
( 13) 
( 14) 
(23) 
(24 ) 
(34 ) 
( 123) 
(124) 
(134) 
(234) ..( 2 .2 ) 
( 132) 
(142) 
(143) 
(243) 
(1234 ) 
( 12Ll3 ) 
(1324) 
(1432) 
(1342) 
( 1423) 

( 12)( 34) 
( 13)( 24) 
(14)(23) 

The direct sum representation pcan be extended by linearity to 

a Z-algebra homomorphi~m pfrom ZS4 into d Z-algebra of 10x10 mat­

rices of the form given in (2.1).Letplx1
' )=(P1(x*~' P2(X*),Pj(X*))= 

be the natural projection mapping X to the 'matrices(X1,X2,X3) 
The composite mapobtained by applyingpand then pisX1,X2,X3. 

a Z-algebra homomorphism sending ZS4 into the Z-algebra of triples 

of 2~2, 3x3 and 3x3 matrices. We 1<'1 0 denote the restrict Ion of 

t hi , map pop I \)V(ZS4)' 111PII 0 i-, d II'Jmomorphism of VllS ) Into the
4

qn :III! :, i (2 , Z) llillL( j , Z )&IG I (j , Z) • 

lhe nomomorptu sm e cen be described III terms of t.ne ma t ri x P as 
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follows: 
24 

Letcx=[a 1a2.·.a24] represent the element r=i;'1 aig i, where the 
supporting elements gi are listed as mentioned before~ It follows 

tuat the matrix product aP=x* gives the row-vector x" associated 

with p(r)=X*. Then 8(r)=P(x*). The image of V(ZS4) under 8consists 

of the elements (X of GL(2,Z) (j) GL(3,Z) (j) GL(3,Z) which are1,X2'X3) 
projections of those matrices X* such that aP=X~ where ais the row­

vector of coefficients of some rEV(ZS4)' Thus, once p- 1 is known, 

we can say that the range of e is contained in the set of all (X 1'.'- -1
X in GL(2,Z) (j) GL(3,Z) (j) GL(3,Z) such that X"P is a row­2'X3) 
vector of integers whose sum is 1. 

The matrix P can be inverted using Schur relations, as mentioned 

in [1,2]. We list the steps of this inversion process for the sake 

of ccmpIeteness , (Pk's are the irreducible representations of S4 

(1) Determine the fixed i,j and k such that the mth column of P 

consists of {Pk(g)ij I gES4}· 
(2) Once i,j and k are known, select the column of P; say the 

mtt h column, which consists of {Pk(g)ji I gES4} . 

(3) Rearrange the mtt'l co-lumn by interchanging the entries for 

Pk (g)ji and Pk (g-1)ji' Then multiply each entry by nk/24 where 

nk is the degree of Pk . 

(4) Transpose the result of step (3) to obtain the mth row of 
p-1 . 
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This leads to the following matrix: 

111111111111111111111111 
1-1-1-1-1-1-1 1 1 1 1 1 1 1 1-1-1-1-1-1-1 1 1 1 
2 0 2-2-2 2 0 0-2 0-2-2 0-2 0 2-2 0 2-2 0 2 2 2 
o 2 0-2-2 0 2 2-2 2-2-2 2-2 2 0-2 2 0-2 2 0 0 0 
o 2-2 0 0-2 2-2 2-2 2 2-2 2-2-2 0 2-2 0 2 0 0 0 
2 0-2 2 2-2 0-2 0-2 0 0-2 0-2-2 2 0-2 2 0 2 2 2 
3 0-3 0 0-3 0 0 0 0 0 0 0 0 0 3 0 0 3 0 0-3 3-3 
o 0 0 3-3 0 0 0-3 0 3 3 0-3 0 0 3 0 0-3 0 0 0 0 
o 3 0 0 0 0-3-3 0 3 0 0-3 0 3 0 0-3 0 0 3 0 0 0 
o 0 0 3-3 0 0 3 0-3 0 0-3 0 3 0-3 0 0 3 0 0 0 0 
3-3 0 0 0 0-3 0 0 0 0 0 0 0 0 0 0 3 0 0 3 3-3-3 
o 0 3 0 0-3 0 0 3 0 3-3 0-3 0-3 0 0 3 0 0 0 0 0 
o 3 0 0 0 0-3 0-3 0 3-3 0 3 0 0 0 3 0 0-3 0 0 0 
o 0 3 0 0-3 0-3 0-3 0 0 3 0 3 3 0 0-3 0 0 0 0 0 
3 0 0-3-3 0 0 0 0 0 0 0 0 0 0 0-3 0 0 3 0-3-3 3 
3 0 3 0 0 3 0 0 0 0 0 0 0 0 0-3 0 0-3 0 0-3 3-3 
o 0 0-3 3 0 0 0-3 0 3 3 0-3 0 0-3 0 0 3 0 0 0 0 
0-3 0 0 0 0 3-3 0 3 0 0-3 0 3 0 0 3 0 0-3 0 0 0 
o 0 0-3 3 0 0 3 0-3 0 0-3 0 3 0 3 0 0-3 0 0 0 0 
3 3 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0-3 0 0-3 3-3-3 
o 0-3 0 0 3 0 0 3 0 3-3 0-3 0 3 0 0-3 0 0 0 0 0 
0-3 0 GOO 3 0-3 0 3-3 0 3 0 0 0-3 0 0 3 0 0 0 
o 0-3 0 0 3 0-3 0-3 0 0 3 0 3-3 0 0 3 0 0 0 a 0 
3 0 0 3 3 0 0 0 boo 0 0 0 0 0-3 0 0-3 0-3-3 3 

(2.3)
 

Since the matrix P is invertible, the Z-a1gebra homomorphism ~ 

is an isomorphism. The blocks of the matrix X* in (2.1) are 

K= 

X -
r 

a1+a3-a4-aS+a6-aS-a10-a13 

-a,S+a16-a'7+a19-a20+a22+a23+a24 

a2-a4-aS+a7-a8+a9-a10+a11+a12 

-a13+a14-a1S-a17+a18-a20+a21 

a2-a3-a6+a7+aS-a9+a10-a11 

-a12+a13-a14+a1S-a16+a1S 
-a 19+a21 

a1-a3+a4+aS-a6-a9-a,,-a12 

-a14-a16+a17-a19+a20+a22 
+a23+a24 
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al-a3-a6+a16 

+a19-a22+a23-a24 

a4-aS+aS-al0 

-a13+alS-a17+a20 

a2-a 7-a 9+a11 

-a12+a14+alS-a21 

al+a3+a6-a16 

-a19-a22+a23-a24 

..., 
a4-aS-a9+all : (2.4) 

+a12-a14+a17~a20 , -a13+alS-alS+a21 

a2-a 7-a S+alO 

-----------------t----------------­
a1-a2-a7+a1S a3-a6+a9+al1
 

+a21+a22-a23-a24 -a12-a14-a16+a19

-----------------1-----------------­

! al-a4-aS+a17a3-a 6-aS-a lO
 

+a13+alS+a16-a19 
I
I +a20-a22-a23+a24
 

-a4+aS-a9+all I -a2+a7-aS+al0 
I 

+a12-a14-a17+a20! -a13+alS+alS-a21 

=~~:~~:~~=~~~--- -~~:~;:~;=~~~----l-=~;:~~:~~:~~~-----

~:~:::~=::~::::~--:::~:::::::::::~~-::~:::~~::~~::~:--
-a3+a6-aS-al0-a 2+arag+a11 I a1+a4+aS-a 17 

-a12+a14-alS+a21 +a13+a1S-a16+a19 -a20-a22-a23+a24 

Consider a vector x*=( x •.. 'x The vector (a l,a2.. ,a 2LlJ1,x2' 24]. 
whose image under e is x* wi 11 be computed from the product x* p-l. 

For each of a i to be an integer, the system x*p - \:O( mod 24) must beso 1ved. 

We list some properties of the matrices Xl 'X and X which can be2 3
 
drawn from the forms of these matrices (2.4'.
 

l3 x~ ,. 7 Xs xg UFor X X = x x xl= Xs x 2 10 l l 12;
6 x x x13 14 l S f

we have 

(a) in Xl: x (mod 3)3+xS=x4+x6 
(b) in x7+xl0+x13::xS+x1l+x14 ::X9+x12+x1S (mod 2)X2: 

in x16+x19+x22=x17+x20+x23::xlS+x21+x24(mod 2) X3: 
(c) the corresponding entries of X and X are congruent (mod 2):

2 3 
xl,:x IC (mod 2); x (mod 2) ; ... ; x (mod 2) 

H=-x 17 1S=-x 24 

1(1 .lescribe "0111i:' lither' re l a t lUll' l'I" ''''''''1. lilt' rn i l r It t,S X !lId X;,3 

we dd,f1~-Ltle t o i Iowi uq surns dliLl pro.luc t s : 



48 

4 

I, = x7xl1x15 

12 xSx12x13 

,I3 x9x'Ox'4 
14 =-x 9x"x'3 
t 5 =-x8x'Ox'5 
t 6 =-x 7x'2x'4 

t, = x16 +x20 +x24 'q x16x20x24 
t 2=-x 17 +x21 -x 22 t 2 x17x21x22 

t 3 =-x'8 +x19 -x 23 t 3 x18x19x23 
t 4= X18 -x 20 +x22 'f4 =-x 18x20x22 

t s= x17 +x19 -x 24 t s =-x 17x19x24 
t 6=-x 16 +x21 +x23 f 6 =-x16x2,x23. 

In terms of these t and t k s we have the following relationsk 
between X2 and x3: (k=1, .•.• 6) 

(d) Let xi and be any two elements of X belonging to t k andxj 2 
let xi and xi be the corresponding elements of X3 in t k . Then 

(a ') IfXi,xj(respxi,xj)belongtot1,t2 ort3(resp.ti,t2ort3)then 
x.+x .=-(x!+x') (mod 4) and x, -x .=-(x' -x!) (mod 4)

1 J 1 J 1 J 1· J 

(b ') If Xi ,x (resp. xi ,xj) belong t 6 (resp.t4,tsj to t 4,t5 or 

or t 6) then 

X.+X. =x'.+x! (mod 4) and x.vx . =x~-x~ (mod 4).
IJ IJ . IJ IJ 

We know that for a vector x" to belong to e (V(ZS4)) a necessary 

and sufficient condition is that the vector x* satisfy the congru­

ences x* p-' =0 (mod 24). This gives 24 equations represented by 

the matrix equ ali ty [a, ,a2, ... ,a ] = x* p-1 for calculating the24 
integers a"a2, ... ,a24• 

24Summing up these equat ions we see that L i=l a = 24x,l24=xi l, 

from which we derive the conclusion that the first component Xl of 

the vector x* must be chosen to be 1. Because the diagonal entries 



49 

of the matrix K m~st be units, the second component xz of ? will 
be chosen to be j 1. Hence the pair (x1;xZ) must be (1,1) or (1,-1). 

7t h, 10t h, 11 t h, 1Zt h, For these choices of the 5t h, 6th,(x1,xZ)
Z3 rd and 24t h of the congruences x* p-1 ~O(mod 24) will not be at ­

1st, 2nd, 3rd, 4t h, 8t h andfected; 9t h of these congruences will 
have the followi ng forms in terms of the sums t k and t k.(k=1 , ... ,6). 

For	 (x, ,x2)=(1,1) For (x1,x2)=(1,-1) 

2( 1+x3+x6) +3(t 1+t; )=0(mod24) 2(x3+x6) +3(t 1+q )=0(mod24) 
2(x4+x5) +3(t4-t,p=0 2(1+x+X5)+(t4-t4) =0II	 II 

2(x3-x5-x6) +3(t6-ttP=0 II 2(1+x3-><s-~)+3(t6-tf)=:° " 
(2.5). 2( -x3-x4+x6)+3(t5-t~P=0 " 2(1-x3-x4+~)+3(t".s-tS)= 0 II 

2(1+x4-x5-x6)+3(t3+t3)=0 2(»f><s-~)+3(t3+t3) =0II 

2(1-x3-x4+x5)+3(~+"t2)=0 " 2(-~-x4+><s)+3(t2+t2) =: 0 II 

To derive further properties of matrices X2 and X3 we consider 

the sums t i of X2(similarly for X3). 
From the form of X2 in (2.4) we write the sums: 

t1=3a1-a2-a3-a4-a5-a6-a7+a16+a17+a18+a19+a20+a21-a22-a23-a24 

t2=-a2+a3-a4+a5-a6+a7+3ag-d11-a1Z-a14-a16-a17-a1S+a19+a20+a21 
t3=-a2-a3+a4-a5+a6+a7+3aS-a10-a13-a1S-a16-a17+a1S+a19+a 20-a 21. 

Keeping in mind that	 we see that t 1+t2+t3+1 =O(rocd 2)a1+ ...+a24=1, 
and that the sum an odd integer. Similarly, the sumst 1+t2+t3 is 

t;+t2+t3 and odd. Accordingly, we can listt 4+t5+t6, t 4+tS+t6 are 

the following properties: 

(1) Since ti=ti (mod 2), either all of the sums aret 1,t2,t3 
odd, or one is odd and the other two are even, and simi Iar ly for 

the sums t"t2,t3 ; t 4,ts,t6; t 4,tS,t6. 
(2) For at least one t.(resp.t~) all three numbers belonging to 

1 1 
ti(resp.ti) are odd; otherwise, all six products t i being even, the 
determinant of X2=t1+ ...+t6 would beF~l. 

(3) For at most one ti(resp.ti) all three numbers are odd. Ot­
herwise be even. det(X2),(resp. det(X3)) would 
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Accordingly, for the matrices X2 and x~, for exactly one t i ai 1 
three numbers belonging to these t. ,t! are odd, the remaining

1 1 

elements of these matrices are even. 
(4) If the odd entries of X2 and X3 belong to t l and ti then 

at least one of the entries on t2,t3(t2,t3) must be divisible by 4. 

(mod 3)} C GL (2 ,Z) 

xa xg ~ co1umn sums are congruent (mod 2)} 
"u and exactly one t i contains odd CGL(Z,3)x12 

entries; the other entries allx14 x15 
being even. 

G3cGL(3,Z) defined similarly for GZ. 
Now let G=G Q G2 Q G31 

" Q GL(3,Z) IXl 'X2' X{ (X l,X2, X3)EGL(2,Z) Q GL(3,Z) 3 
satisfy conditions (a)-(d) and (2.5) J. 

Then G is a group containing e(V(ZS4)) and we can characterize the 
group of units under consideration as fQllows: 

2.1. PROPOSITION.
 

Proof. The only thing we need to show is that e :V(ZS4) ->G 
is an isomorphism and that the inclusion e(V(ZS4))cG is an equ ­
ality. Let 12 and 1 denote identity matrices of order 2 and 3,3 

resp. and K the diagonal matrix with entries xl,x2• Consider the 
matrix 

K I

]*X " 

r 
If wf·III)(J, "l,'.:i i her thdfl II.li: t nat iS,if ()(j,x

2 
)=(l , -1) , 

tiler, Wl tjt'l :1'UrTl t he f,rrJduct -""'1,-1. "l,lrles other' than integers; 

e.g. the first four entries of x*p- l are 11/12, 1112, 1112 and 1112 
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Therefore, the natural projection p restricted to P(V(ZS4)) has 
trivial kernel. Since p is already an isomorphism, it follows that 
6 ~ an isomorphism. 

Finally, we show thateis onto by observing that [a" ... ,a24]: 
x*p-' has integer entries. Choose From the forms of(X"X2,X3)EG. 
the blocks in (2.4) we obtain, by a long computation, the congru­
ence 

det(X, ):x 3x6-x4x5 =x,x2 (mod 3):: x2 (mod 3) 

from which we determine the second entry of K to be x2=det(X,).Now 
we use the choice (x"x2)=("det(X,)) toqether with the entries 
of X1,X2,X3 to determine the vector x*= [x 1, ... ,x24]=[', detX"x3 

the vector of coefficients a= [a 1, ... ,a 24]for, ... ,x24]and find 
an element r=Iai9i in V(ZS4) which satisfies the equality aP=x*. 
That the coefficients a1,a2,a3,a4,a8 and a9 are integers follows 
from the conditions (2.5) and that the remaining coefficients are 
integers from conditions (a), (b), (c), (d). 

Example. We observe that the triple 

~ 
5 2 -30 -21]

-6 -3 -2 ) 
-57 -34 -24 

belongs to the group G described above. Because det (X 1)=-1 we ma­


ke the choice (x"x2)= (1,-') and form the vector
 
x*= [1,-' ,46,-19,-63,26,4,-30,33,-6,51 ,-58,-3,22,-24,-52,-30,-21,
 

-6,-3,-2,-57,-34,-24]. 
Now the product x~'~1 gives the vector 

a= [0,0,0,0,O,u,-27,0,0,6,-30,0,0,0,0,28,0,0,0,0;24,0,0 ] 

'with non-zero entries a7=-27,a1Q=6,a11=-30,a16=28, a22=24 
group ring elementand a,+ ...+a24=1.Hence the 

r=a7g7+a10g10+a11g11+a16916+a22g22 
:-27(34)+6(134)-30(234)+28(1234)+24(12)(34)EZS4 
'. -1 -1 ( -1-1
IS a unIt with inverse r EZS4 determined by a = x*) P ; where 
(x*)-1 is a vector obtained by using 1, detX 1 and the entries of 
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1	 -1 -1
the	 matrices X, , X ' X . Si nce 2 3 

-1 -1 -1 [- 26 - 19l ~5 ~ ~ 7J ~4 6 ~l
 
(X 1 'X2 'X3 ) =( -63 -461, ~1 2 24 , t~~-§~-~~ )
 

and det(x,1 )=-1 ,we again make the choice (X ,X ,-1) and form
1 2)=(1 

(x)*	 -1 =[ 1, -1,-26, -19, -63, -46,52,6,57,30,3,34,21,2,24,-4,6,3,30 

-51,-22,-33,58,24].
 

Accordingly,
 
-1 (*)-1 -1 a = X P =[0,0,0,0,0,0,-27,0,0,0,0,0,0,-6,30,0,0,0,
 

28,0,0,-24,0,0]
 

with non-zero elements a7=-27;a14=-6;a15=30;a19=28;a22=-24,
 
1
and	 the desired inverse element r- is obtained as 

-1 
r =a7g7+a14g14+a15g15+a19g19+a22g22 

=-27(34)-6(143)+30(243)+28(1432)-24(12)(34). 

bZET 

Bu cal i smade Z54 grup na lkas iru n bi rimselleri, 54 grubunun f ark l i 

denk olmayan indirgenemez representasyonlan a l t mdak i muayyen genel 

lineer gruplar i c t ndek i gorUnUmleri kul l aru l arak karakterize edi lmi s 

olup, Z5 de ogmentasyonu 1 olan birimseller grubunun GL(2,Z) ~ 4 
GL(3,Z) i GL(3,Z) nin bir alt grubuna izomorf o Iduqu gosterilmi~tir. 

REFERENCES 

1.	 Allan, P.J and Hobby, C. A characterization of units in ZA4,J. Algebra 66,534-543, 1980. 

2.	 Hall, M. The theory of groups, Chelsea, New York, 1976. 

3.	 M~l~es, C.P. The units of the integral group ring ZD4,Bol.Soc.Math.Brasil 4,85-92,1972. 

4.	 Hughes 1. and Pearson, K.R. "The group of units of the integral 
group ring ZS3' Canad.Math.Bull.15, 529-534 1972. 

5.	 Sehgal, S.K. Topics in group rings Dekker, New York, 1978. 
6.	 Denn~s, R.K. The structure of the unit group of group rings 

Lecture notes in pure and applied math. vol.26; Dekker, New York 1977. 



53 Hacettepe Bulletin of latDral Sciences and Engineering 

1986/ Volu~ 15/pp. 53-59 

A NOTE ON FUZZY NEARLY COMPACT SPACES 

This paper discusses fuzzy near compactness in fuzzy to­
pological spaces. We give some characterizations of fuzzy 
near compactness in terms of regular open and regular closed 
fuzzy sets. 

Key Words: Fuzzy topological spaces, Fuzzy near compactness 

1980 Subject Classification: 54A40 

1. INTRODUCTION 

Zadeh in [8] introduced the fundamental concept of a fuzzy set. 
Fuzzy topological spaces were first introduced in the literature 
by Chang [2] , who studied several basic concepts including fuzzy 
continuous maps and compactness. In this paper we study fuzzy nearly 
compact spaces. We give some characterizations of near compactnes 
in terms of reguIar open or reguIar closed fuzzy sets. We first 
give some necessary preliminaries. 

Let Xbe a nonempty set and F(X)= {fIf: X--;>[ O,1]} • The elements 
of F(X) are called fuzzy subsets of X[8] . We denote by Ox and 
1 the functions on X identically equal to °and 1 respectively. x 

Now we recall that a fuzzy topology in the sense of Chang [2] 
is a subset t of IX such that x 

(t ) 0xEtx and 1xEtx' 

(1) Hacettepe Univ.Fac.of Science, Mathematics Dept., Ankara,TURKEY 
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A collection {fi} id ,where fiE\, iEl, is a cover of X iff 
i~Ifi=1x. A fuzzy topological space is compact iff every open co­
ver has a finite subcover [2] . 

Let Xbe a fuzzy topological space. For a fuzzy set of X, the clo­
o 

sure T and the interior f of f are defined respectively as 

T=inf {g:g>f,g'E't }x 
and 

o
f=sup { g:g <f, gE't } • 

X 

A fuzzy set f ois_ called regularly open iff f=(r)° and regularly 
closed iff f=(f) [1]. 

A fuzzy topological space X is almost compact iff every open 
cover has a finite subcollection whose closures cover X[ 3 ] . A 

fuzzy topological space X is called nearly compact iff every open 
cover of X has a finite subcollection such that the interiors of 
ue closures of fuzzy sets in thi s collection covers X[ 4 ] . 

If't x is a fuzzy topology on X, a collection B£-rxis a base of 
't iffeachf£'t is of the form .VIf., where f.EB,Vi; and its mem­x x 1£ 1 .1 
bers are called the "basic open sets of the topology r ". A col­x 
lection ~'t is a subbase iff {f.A •.. Af · } fiES is a base ot e.. x 1 1 1n x 

2. RESULTS 

The following theorem shows that we may work with fuzzy regularly 
closed or fuzzy regularly open sets: 

2.1. THEOREM. In a fuzzy topological soace X with base B the fol­
lowing conditions are equivalent: 

(i) X is nearly compact. 
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(ii) Every basic fuzzy open cover of X has a finite subcollec­

tion such that the interiors of cLosures of fuzzy sets in this 

subcollection covers X. 

(iii) Every cover of X by fuzzy regularly open sets has a f ini te 

subcover. 

(IV) Every collection of fuzzy regularly closed sets having the 

finite intersection property has nonempty intersection. 

(V) Every collection {f i} id of fuzzy closed sets having the 

property	 that for any finite subcollection {f.: i=1, ... .n) of 
n 0 1 

{f i} id' i~1(fif#Ox' has nonempty intersection. 

Proof. (i=:>ii) follows easily. 

(ii==>iii). Let {f i£I be any fuzzy regularly open co­i} 
ver of X and let B be a base for ~x. For each i£I, 

f i= V {9j:jd i, 9{B} Then A= {gj: jd iEl} is a basic openi, 

cover of X. By(ii), A has a finite subcollection {gk:k=1, •.. ,n } 
n	 -

such that k¥1 (9k P=1 x• Now for each k=1,2, ... ,n there exists a 

f k£ A such that gks. f Therefore we have (9k)°S.(f'k)0=fk andk• 
n 

k~1 f k=1x: 

(iii ==>iv). Let {gil id be a collection of fuzzy regularly 

closed sets with the finite intersection property and suppose that 

.A g.=o .	 Then {1-g.} . I is a collection of fuzzy regularly1£I 1 XIIe 

open sets with the finite interspction property and by assumption 

there existsa finite subset F~I such that iYF This(1-g i)=1 X. 
implies .AF9·=ox' W"iich is a contradiction. Hence l·AI g.#o .1£ 1 e 1 x 

(tv ==>v) . Let {g.}. I be a collection of fuzzy closed sets
1 1£ 

having the given property. Then {(8·)-} . I is a family of fuzzy1 1£ 
regularly closed fuzzy sets having the finite intersection property. 

o 0 
By (tv ), i~I (gi)-#Ox' But, from (gi)- S.gi we have i~l gi#Ox' 
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(v =>i). Let {f.} I be a fuzzy open cover of X.0 

1 lE 

If loVF (fo)o does not cover X for every finite subcollection e 1 \ 

{fi } iE:F' then i~F (v), i.e.((l-f i)o)-#ox· By ih (1-f i)#oX' 

i~l (1-(1-f i))#l x and hence the contradiction i~I f i#l X· 
Obviously every nearly compact fuzzy topology is almost compact. 

The reverse imJi ication does not hold in general: 

2.2. EXAMPLE. Now let X={a,b,c,d} and .x be the fuzzy topology 
with subbase 

where 
1 1 1

f n(a)=l- n ' f n(b)=l- n ' fn(c)= L ' 
1

f n(d)=l- n 
1 1kn(a)= n ' kn(b)= ~' kn(c)=O, kn(d)=O, 

Then (X"x) is almost compact but not nearly compact. 

2.3. REMARK. This example may also be used to show that one cannot 
replace "base" by "subbase" in Theorem 2.1. (ii). For consider the 
subbase {Pn'qn,r } wheren,hn,kn:n=1,2, •.•. 

P = (V (fnAgn)) V fn'n n 

Q = (V (fnAg n)) Vgn n,n 

r =f Vg •n n n 

For this family B the condition (ii) of Theorem 2.1 is satisfied 
- 0 - 0 - 0

since (Pn) =(qn) = (rn) ='x· However as we have noted this fuzzy 
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topological space is not nearly fuzzy compact. 

Recall t.he t a fuzzy space (X.'tx) is called a fuzzy semiregular 
space iff the collection of all fuzzy regularly open sets of Xforms 
a base for the fuzzy topology 't [ 1 ] .x 
2.4. THEOREM. A nearly compact semiregular fuzzy topological space 
X is compact. 

Proof. Let {fi}iEI be an open. cover of~. that is i~I f i=1 x' 
Since X is semi requl ar , f,=,V I g.~ • where gJ~ is a fuzzy regularly 

1 J E i J 

open set. But. from ,V I 'V I g~ =1 X' there exists a finite subcol-
IE JE i J n 

lection {gk: k=1, ... ,n} such that k~1 gk=1 x' Now for each k=1, • 
... ,n t~ere exist' a f k in {f i} id such that gkS.fk' Hence we 
have k~1 as required.f k=1 x 
2.5. COROLLARY. A fuzzy semiregular space is nearly compact iff it 
is compact. 

Proof. This is immediate from Theorem 2.4. 

In Azad [1] some weaker forms of continuity, fuzzy semicontinuity 
fuzzy almost continuity and fuzzy weak continuity, are considered 
for the first time. For a fuzzy almost continuous function we have: 
A fUzzy almost continuous image of an almost compact fuzzy topolo­
gical space is almost compact [3] and a fuzzy strongly continuous 
image of an almost compact space is compact [4] . The same holds 
for nearly compact spaces:. . 
2.6.COROLLARY. An almost ccrntinuous image of a fuzzy nearly compact 
space is fuzzy almost compact. 

2.7. COROLLARY. The image of a fuzzy nearly compact space under a 
strongly continuous mapping is compact. 

The proofs are simi larto the almost compact case, and areanitted. 

A. Di Concilio and G. Gerla [3] studied products of fuzzy almost 
compact topological spaces and proved that in general almost com­
pactness for fuzzy topological space is not product invariant. 
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although if X and Yare almost compact fuzzy topological spaces 

and if X is product-related to Y, then their fuzzy topological 

product is almost compact. Recall that a fuzzy space X is product 
related to another fuzzy space Y, if for' any fuzzy set f of X and 

g of Y whenever h'lf and k'ig implies (h'x 1)V(1 x k') ~fxg, whe­

re h£'t and ke r y' there ex i sts h1£'tl: and k1e r Y such that h\~f orx 
k:~ and (h~XI)V(IXk~)=(hlxl)V(lXk) [1] Itilere hi and k' are the 

complements of hand k, respectively. If f is a fuzzy set of X, g 

a fuzzy set of Y and Xis ptoduct-re1ated to Y, then f x g=fxg 
holds[1 J. We omit the proof which is simi lar to the almost conact case. 

2.8. COROLLARY. If (x,'tx),(Y, 'ty) are nearly c~pact fuzzy topo­
logical spaces and X is product-related to Y, then their fuzzy to­

pological product is nearly compact. 

A product of two nearly compact fuzzy topological spaces need 

not be nearly compact. 

2.9. EXAMPLE. Let X be a nonempty set, 

't ={ faE f (X) : a>~} U{ox} 

and 

where we denote by f the fllrtioo 00 X identically equal to a[ 3] • 
OU . 

We have that (fa) ='X' )L faE't, a#O. Then 't is nearly compact 
since every open cover of 't* must contain 1 and then also 't* is x 
nearly compact. Their standard product is (f1EF(XxX): 0;S1<1}. 

Then (fl)o=f 1 , )L 1. Thus the open cover {f1}, 0 $.1< 1, does not 

contain any finite proximate subcover. 

Acknowledgment. The author would like to thank Asoc, Prof.Dr. Do­
gan ~oker and Dr. Lawrance Brown for some very helpful suggestions. 
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oztr
 

Bu ~all~mada belirtisiz topolojik uzaylarda yakln tlklZllk in­
celendi. Belirtisiz yakin t ik i zl i qm belirtisiz regUler acik ve 
regUler kapall kUmelerle karakterizasyonu verildi. 
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MATRIX BAER* - RINGS 

A. Harmanc 1 ( 1 ) 

Let R be a ring with involution * and R denote the ring 
of all nxn matrices over R. We assume every 

n
prime homomorphic 

image of R has proper induced involution. Under this assumption 
it is proved that R is Baer*-ring for all n with transpose 
involution if and o~ly if P=P* for all prime ideals P, the 
induced involution on RIP is positive definite and R is a 
semi-hereditary ring. 

KeyWords: Baer*-rings, Semi-hereditary rings, Ring of quotients 

1980 Subject Classification: 16A~8 

1. INTRODUCT ION 

Throughout R will denote an associative ring with identity 1. 

We follow the terminology of [1) in general. If R is a ring with 

an involution *, we may define an involution on the nxn matrix 

ring R by applying both the transpose, and the involution to n, 
each of its entries. 

1.1. DEFINITION. Let R be a ring with involution *.The involution 

is positive definite if, for all finite subsets {ri}af R,Lrir7 =0 

implies all the r i are zero. An element r of R is said to be bounded if 

there ex i sts a posit i ve integer k such that r~< r-ck 1. The set of all 

bounded elements is denoted by R it is called the bounded subringb; 
of R. 

(1) Hacettepe University, Department of Mathematics, Ankara. TURKEY 

" jI 
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1.2. LEMMA ([3]). For a ring R with involution, for any positive 

integer n , (Rn)b==(Rb)n" 
We record some other results which are known for the sake of 

completeness. 

1.3. LEMMA (;3~). Let R be any rir,g with positive def im te invo­

lution, and let Q be its maximal right quotient ring. Suppose the 

involution extends to Q. Then the involution in Q is positive 

definite, Qn is Baer*-ring for all n,and Rn in Baer*-ring for all 

n if and only if Qb is contained in R. 

1.4. LEMMA ([2]). Let R be a ring with involution *. Suppose for 

all x-R, l+xx* is invertible in R. Then for all maximal two-sided 

ideals Mof R, M=M*. 

Proof. Assume M;lM*. Since Mis maximal, then the canonical mapp irq 

from R/MliM* to RIM xR/M* is onto. For {-1, 1) in RIM x R/M* there 

corresponds an xER such that (x,x)=( -1,1) holds: This impl ies l+xEM, 
l-x EM*. Hence l+x and l-x* lie in M and so l+xx* =l+x-x(l-x*) is 

in M. This and the invertibility of l+x x* leads us to a contra­

diction. Thus M=M*. 

2. RESULTS 

In] 1] ,§55, 'it is noted that "We are then left with the problem of 

determining conditions on a finite Baer*-ring R that are suffici­

ent to ensure that Rn is a Baer*-ring. The problem is largely open". 

It is proved in[l ]that R is Baer*-ring under severe hypothesisn 
but AW*-algebra case is covered. The question naturally arises, 

under what conditions does the matrix ring R become a Baer*-ring.n 
This question is largely studied in ([3],[4]). 

Tn this note among other things, we generalize Theorem IV.5 in 

[21to prime ideals. 

Theorem ([2],Theorem IV.5). Let Rbe a semi-prime PI Goldie ring 

with involution *. Then Rn is Baer* with respect to *-transpose 
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· .
 

for	 all n, if and only if 

(a)	 P=P* for all primitive Ideals of R 

(b)	 The induced involution on RIP is positive definite for all 

primitive ideals P 

(c)	 R is semihereditary. 

We begin with the following 

2.1. LEMMA. Let R be a ring with involution*. Suppose R has a two 

sided prime ideal P satisfying 

x X*E P implies XEP (xER). 

Then P=P*. 

Proof. Assume we have an xEP* and xiP. Then for all rER, 

(rx)(x* r*)=(rx)(rx)*EP* and (rx)(rx)*EP. Since P is prime we ob­

tain rXEP from hypothesis, thus RxP and so xEP. This contradiction 

proves that P=P* . 

We consider the following condition in rings with involution. 

(el) .. The invertibility of ltxx* implies P=P* 

2.2. LEMMA. Let R be a ring with a positive definite involution. 

Then for every xER ltxx* is not a zerO divisor. 

Proof. Assume (ltxx* )t=O for some tER. We right multiply by ~ 

and we obtain ttt(tx)(t*xJ*=O. This and the positive definiteness 

of involution implies t*t=O, t*x=O which implies t=O. 

2.3. PROPOSITION. Let R be a semi-prime Goldie ring with involution 

and assume every prime homomorphic image of R is regular ring. If 

R satisfies the following conditions 

1) For each primp ideal P in R,P=P*, 

2) The induced involution on RIP is posi ti ve definite. 

3) R l S semI-hereditary. 

Then l~ is 8aer"'-rinn for all 1)()';1 11/ f - i nt.eqer II. 
n 

Proof. R IS semi-pnme Goldie, therefore Rn is semi-prime 
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Goldie. The maximal ring Q(Rn) of quotients of R is semi-simplen 
artinian [5,(2.3.7)J , so for any subset S of Q(R the rightn), 
annihilator r(S) is induced from the annihilator of an element a 

in Q(R Since R is semihereditary, by [3 J R is principallyn). n 
projective, therefore r(S)=r(a)=eR for some idempotent e€R To n n. 
prove R a Baer* -ring it is enough to show l+xx* is invertible n 
[6, Theo.26J. For if K is a primitive ideal in R then K=P for n n 
some primitive ideal P in R [7, page 71 J ~ Sioce each primitive 

ideal is prime ideal, 1) and 2) imply P=P* and the induced invo­

lution on RIP is positive definite. Since (R/P)n=R/P and alln 
hypothesis of R are satisfied by R then Rn/P has positive de­n, n 
finite involution. Lemma 2.2 implies, in (R/P)n=R/P l+xx* isn, 
not zero divisor. Since RIP is regular, Rn/P is regular and therefore n 
l+xx* is invertible in R/P Then for each xER and for everyn- n, 
primitive ideal Pn, 1+xx* is invertible in Rn/Pn• Thus l+xx* is 

invertible in R which proves the proposition.n 

2.4. PROPOSITION. Let Rbe a semi prime Goldie ring with involution 

*and assume every prime homomorphic image of R is von Neuman regular 

and R is Baer*-ring with respect to transpose involution for all n 
n.	 If (el) holds for prime ideals ~ in R then 

1) P=P'" for all prime ideals P, 

2) The induced involution on RIP is positive definite, for all 

prime	 ideals P in R, 

3) R is semi-hereditary. 

Proof. Since R is semi-prime Goldie, it has a semi-simple arti ­

nian maximal ring Q(R)=Q of quotients. Then * extends to Q and Qn 
is Baer*-ring and Qb the ring of bounded elements of Q is contain­

ed in RDJ.As in [2] we give a detailed proof that l+xx*is inver­

tibleinlLSlnceR2 is Baer*-ring, wetakeXER and we put X=(~ ~), 

and r(X)=pR2 for some projection p in R Denote Y=(-~ ~ )ER22. 
and then XY=O, so YEr(X) and pY=Y and Xp=O. Since R2 has transpose 

involution then p must have the from (~* ~) where a=a*. We use 
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Xp=O and pY=Y and we obtain a+xb*=O, -ax+b=-x. We apply the invo­

lution to the second and use the first equality to obtain a=xx*(1-a). 

We add 1-a to both sides this equality and we conclude that 1+xx* 

is invertible. We here invoke (CI) to get P=P* for every prime 

ideal P of R,and so 1) follows. Let P be a prime ideal of R, then 

RiP has an induced involution, and since it is regular, then RIP 

is a *-regular ring [5.Theo.25J and so xx*EP implies XEP. Since 

Rn/P satisfies all the hypotheses of R then XX*EP implies~Pn n n 
for all prime ideals P in Now we prove the induced involution n Rn• 
of RIP is positive definite. For this it suffices to show 1:X iXiEP 
implies xiEP where {xiJt;R,(i=1,2, ••• .t ) . 

Set 

x1 x2 Xt 
X= 0 0 0 

0 0 0 

then x*= 

* x1 0 0 
* x2 0 0 

and 

x* 0 0t 

[XiX! ° 
*XX*= since0 0 E Pn 1:X iXiEP. 

0 0 ~J
 
HenceXEP which impliesxiEP (i=1,i, ... .t ) , It completes the proofn 
of 2). As for 3), R is Baer* -ring hence the right annihi lator of n 
any subset of R is generated by a projection (idempotent), and n 
therefore R is .pr inc iaa l ly projective, thus [ 3 J implies that R is n 
semihereditary. 

2.5. THEOREM. Let R be a semi-prime PI Goldie ring satisfying (C1) 

for all prime ideals with involution. Then R is Baer* -ring with n 
respect to the transpose involution for all n, if and only if 

1) For all prime ideals P, we have P=P*, 

2) The induced involution on RIP is positive definite for all 
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prime ideals P 

3) R is a semi-hereditary ring. 

Proof. Assume R is a Baer*-ring for all n. As in the proof of n 
Proposition 2.4.1+xx* is invertible and so (CI) implies P:::P*for 

all prime ideals. Then RIP has an induced involution and satisfies 

a Pl. Therefore RIP has a maximal ring of quotients Q (RIP) which 
\ 

is semi-simple artin and von Neuman regular. Since the involution 

of RIP is exterded to Q(R/P), Q(R/P) is a *-regular ring whicr. impl ies 

Q(R/P) is regular ring with proper involution. Assume x ~p then 

XX*:::x x* :::0 in R/Pc:Q(R/P) so we have x:::O Wlich implies XEP. 

We proceed as in the proof of Proposition 2.4. to complete the 

pnxrr of 2) and 3). 

Assume 1), 2) and 3) hold. In the light of Proposition 2.3, it 

is enough to prove 1+xx* is invertible for each x in R. For if P 

is a primitive ideal, P is a prime ideal hence P:::P* and RIP has 

induced involution and sat.t sf i es a Pl. Therefore it is simple ring 

by Kaplanks~v's Teorem, and it is artinian, hence RIP is regular. 

Thus Proposition 2.3. completes the proof of the Theorem. 

2.6. THEOREM. Let R be a ring with involution* . Suppose there 

exists r in R and a polynomial g(;\)EZ[;\], where Z:::Z(R) the center 

of R, such that g(r):::O, g'(lr) is right invertible (where g'(;\) is 

the formal derivative of g(;\) ), and the centralizer of r in R is 

semi simple artinian. If R satisfies one of the following conditions: 

i ) R is semi-prime Goldie ring,
 

i 1 } 1\ is semi-prime Goldie and an algebra over a field,
 

iii) R is a PI C*-a Igebra,
 

Then R is Baer*-ring for all n if and only if 
n 

1) For all prime ideals P, p:::p* 

2) The induced invo lut ion on RIP 1" pos i t i ve definite, for all 

prime i dea l: P, 

3) R is a semi-hereditary rlng 
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Proof. Each prime homomorphic image of R is simple artinian in 
the case ii). In the case i) each prime image is simple artinian. 

In these cases the Theorem is clear. Case iii). R is semi-prime 
algebra and the hypothesis implies that each prime homomorphic i ­
mage of R is simple artinian[B]. Hence each prime ideal P and 
primitive ideal P is maximal, therefore RIP is a regular ring.Hence 
the proofs of previous Propositions 2.3 and 2.4 carryover verbatim 
and we complete the proof. 

OZET 

Bu ~all~mada involOsyonlu halkalarln matris halkalarlnln Baer* 

halka olmasl i~in gerek ve yeter ko~ullar ara~tlrlldl. R halkaSI­
nln matris halkalarlnln Baer*-halka olmasl i~in R semi-prime Gol­
die, her asal ideali P i c i n P=P*, RIP pozitif definite involUs­
yonlu ve R nin semi-hereditary sert l er i rn saql amas iru n gerek ve 
yeter olacagl, R nin PI halka; R nin C~cebir olmasl durumlarlnda 
i spat l and i , 
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SOME REMARKS ON THE COMMUTATIVITY
 
OF RINGS
 

A. Harmancl(l) 

Let R be a ring with identity. For any elements x,y in R 
we consider the following relations: 

i) [xn,y] _[x,yn]EZ(R) 

ii) [xm,y] _[x,ym]EZ(R)
 
where m,n are~relatively prime integers
 

222

iii) (xy) - x y EZ(R) 

Iv ) (xy)3 _ x3y3 EZ(R) 

v ) [x 3,y] - [x,y\Z(R) 
In this article we prove the commutativity of semi-prime 

rings satisfying i) and Li ) .or ili) or rv) , v) gives the 
commutativi ty of the ring provided that R+ is 6- torsion free. 

Key words: Commutativity, Commutator, Engel condition 

1980 SUbject Classification: 16A70 

1. INTRODUCTION 

Let R be an associative ring with identity. It is proved in[3] 
that if R satisfies the identities 

n n n+1· n+1[x ,y] = [x,y], [x ,y] = [x,y ] 

for all x,y£R and a fixed integer ns t , then R is corrmutative.Recently 
Gupta [2] generalized this result and nroved the commutativity of 
semiprime rings with identity satisfying \ 

[xn,y] _ [x,y~ Z(R), [Xn+1,y ] _ [x,yn+1] El(R)E 

(1) Hacettepe University, Department of Mathematics, ANKARA, TURKEY 
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for all x,y£Rand a fixed integer nst , where Z(R) denotes the center 
of R. 

2. RESULTS 

Throughout this paper [X ,y ] shall denote the conmutator xy-yx 
and C(R) the commutator ideal of R. 

We begin with the following theorem which is a generalisation 
of Theorem 3 in [2] and Theorem B in [3] . 

2.1. THEOREM. Let R be a semi-prime ring with identity satisfying 

(i) (xn,y] - (x,y'1 £ Z(R) 
(i i ) (xm,y] - (x ,ymh Z(R) for all x,y in R 

where m and n are relatively prime integers. Then R is commu­
tative. 

Proof. We first assume that R is a prime ring. We remark that 
in a prime ring R,ytZ(R) ,x~O and xYEZ(R) implies xtZ(R). We replace 
x by 1+x in the condition (i) and substract it from (i).We obtain 
by using the previous remark 

n-1 n k 
(1) n[x,y] +kh (k) (x ,y]EZ(R). 

Similarly, we replace x by 1+x in the condition ii) and we obtain 

m-1 n k 
(2) m[x,y] + k:2 (k) [X ,Y]EZ(R). 

Since mand n are relatively prime, we can find integers p and q 

satisfying 

(3) pn+qm=1. 

We use p and q in(1) and(2) respectively and we obtain 
m-1 m 

(4) pn (x,y] +p k;2 (k) [Xk,Y]EZ(R). 
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m'3:1 m k 

(5 ) qml x.y ]	 +q k=2 (k) [x ,Y]E Z(R). 

We add(4) to(5) and we invoke(3) and then we obtain 

(6) [if(x)-x,y] EZ(R). 

As	 in [2] we replace Y by yx in (6) to get 

[x2f(x)-x,y] xEZ(R).(7) 

If for all x and y in R[if(x)-x,y]=O then it is well known that R 
is commutative [ 6 J. Assume [if(X)-x,y] -1-0 for some x and y in R. 
Then since R is prime ring, the remark in the fi rst paragraph of 
the proof, together with (7), implies x£Z(R). This leads us to a 
contradiction	 if [x2f(x)-X,y]-I-0. Hence for all x,y in R. 

[X2f(X)-x,y ]=0 
proving R to be commutative. 

Assume now R is semi-prime ring. Then P(R)=O, the prime radical 
of R, and if P is any prime ideal in R, then C(R)c:P since RIP is 
commutative as the prime homomorphic image of R. Hence C(R)cP(R)=(O) 
proving R to be commutative. 

2.2. PROPOSITION. Let R be a ring with identity 1. 

Assume R is a prime ring satisying the condition 

(8) (xy)n_XnynEZ(R) for all x,YER, n>1 fixed integer. Then R 
has no zero divisors. 

Proof.	 We claim first that Rdoes not contain nilpotent elements. 
k- 1-1-0,For if xk=O and x then 

k- 1RHence the right ideal x is nil of bounded nilpotency index. 

Lemma 1.1 [5] implies xk-,=O since R is a prime ring. This contra­
diction proves the claim. 
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Assume xy=O. Then yx=O. Hence xry=O for all Y'E R. Since R is 
prime x=O or y=O. Thus R has no zero divisors. 

Let R be a prime ring with identity satisfying (8) in the pro­
position. For any xlO, and y in R, commute (8) by x and left can­
ceal x to obtain 

(9) (yx)n_xn-1 ynx£Z. 

We interchange x and 
\
y in (8) to give 

(10) (yx)n_ynxn£Z. 

We use (9) and (10)and we get 

(11) ynxn_xn-1 yn x= [yn,x n-1] x£Z. 

We apply the condition (11)to prime rings for n=2 and n=3 and 
we prove the corollaries. 

2.3. COROLLARY (GUPTA [2 HLet R be a prime ri ng wi th identi ty 1 
satisfying 

(*) (Xy)2_x2y2£Z(R) for all x,y£R. 

Then R is commutative. 

Proof. For n=2, the condition (8) in the proposition takes the 
form (*) hence (11) gives rise to 

(12) [l,x] xEl(R). 

Since R has no zero divisiors 

2 2 2[y ,x] xEl(R) implies [y ,x] x=x[y .x l . 

Assume Ch R=2. Replace y by x+y in (12)to obtain 

[[x,y],x] x d(R).Hence R satisfies the 3-rd Engel condition 

[[[ x,y],x] ,x] =0. 

If ChR#2, Replace y by 1+y in (12)to get [y,x] x£Z(R). Thus 
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[[x,y],x] =0 which is the 2-nd Engel condition. In both cases R 
satisfies the finite Engel condition. Hence R is commutative [4]. 

2.4.	 COROLLARY. Let R be a prime ring with identity satisfying 
333(**) ••• (xy) -x Y EZ(R) for all x,YER. Then R is commutative. 

Proof. For n=3,(4) takes the form
 
3 2
(13) •.. [y ,x ]xEZ(R). 

Assume ChR=2. Replace y by 1+y in (13)and we obtain 
[y2+y,X2]XEZ(R). In this we replace y by X+Y and we get
 

[[X,y],X2]XEZ(R).
 In this, replace x by l+x we have
 
[[X,y],X2]EZ(R). This and primeness of R implies xEZ(R).
 

If ChR#2, replace x by l+x in (13)two times to get 

(11) [ y3,X] E:l(R). 

We replace y by yx in (14)and use primeness of R to conclude that 
X3EZ(R). This implies the commutativity of R as it is well known. 

2.5. THEOREM. Let R be a semi-prime ring with identity 1 and sa­
tisfiying one of the following conditions 

(i) (x y)2_x2l E Z(R) 

(t t ) (Xy)3_x3i EZ(R) for all x,y in R. 

Then R is commutative. 

Proof. Every prime homomOrphic image of R satisfies the condi­
, " 

tions (i) and (i!i)', and then we combine the Corollaries 2.3 and 
2.4 with (i) and (ii) to obtain the commutativity of R. 

Note that in the general case n~ it is not known if condition 
(11)implies the commutatity of R. Some restrictions on the rings 
are needed since nilpotp.~t non-commutative rings of bounded nilpo­
tent index t>4 satisfy (11j.The ring remarked on by Bell in[ 1] 
shows that some restrictions are needed to obtain commutativity 
for rings satisfying the condition, 

...
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[xn,y] _ [x,l] r::Z(R) for n:::2. In this direction Bell proved the 
commutativity of rings R satisfying [xn,y]=[y,xn]ifR+is n-torsion 
free. For n=2 Gupta generalized this to semi-prime rings satisfying 

2 2[x .yl-Iy,x ]£l(R). 

As in the previous proofs, by using the Engel condition for prime 
rings, we may prove 

2.6.THEOREM • Let R be a semi-prime ring with identity satisfying 

[x 3,y]-[x,y~ £l(R), for all x,y in R. 

If R+is 6-torsion free then R is commutative. 

ozr: 

R birimli bir halka olsun. R de a~a~ldaki ba~lntiiarl goz bnOne 
alallm: 

i) [xn,y] - [x,yn]EZ(R) 

ii) [xm,y] - [x,ym]£l(R) 

burada m,n araiarinda asal pozitif tam saYllar, 

iii) (xy)2 - llEl(R) 

iv) (xy)3 _ x3y3 EZ(R) 

[x3,y]v) - [x,y3 h Z(R). 

Bu ~all~mada yukarldaki i) ve ii) yada iii) yada iv) ba~lntlla­
rInl sa~layan halkanln komOtatifli~i ispatiandi. v) ba~lntl hal­
kan~n, R+ grubunun karakteristi~i aitl olmamasl durumunda, komOta­
tifli~ini gerektirdiQi gosterildi. 
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POWER COMPARISONS OF SO~1E OUTLIER TESTS 

H.Tet l idt I (l) 

In this paper test ~tatistics introduced by Gentleman ­
Wilk, Cook and Andrews - Pregibon for detecting outliers in 
regression models are considered. The critical values for 
these tests are obtained and the powers of the tests are com­
pared by performing Monte Carlo technique for various sample 
sizes and probability levels. The performances of the under­
lying test procedures are also demonstrated by using the app­
roximated percentiles in a numerical example. 

Key words : Outlier, Power of a test, Monte Carlo technique 

1. INTRODUCTION 

A common nroblem in re~ression analysis is the detection of out­
liers in the data set. It is well known that an outlier usually 
provides a lar~e residual when the chosen model is fitted to the 
data. Therefore, most of the outlier detection Drocedures are 
based on residuals or some functions of residuals such as student­
ized residuals and stande rdized residuals [21. , , 

l :-; 

In this caner some outlier detection tests \·,hich are mostly based 
on residuals are' examined. These ,rocedures have been introduced 
by Gentleman and ~'Jil k [8] , Cook [3, 41 , /'Indrel'/s and Prel1ibon 111. 
The statistics of these tests are res~ectively called QK,Cij 
and AP(AP1, AP2). At first their percenta~e ~oints are ohtained 
by ~lonte Carlo ')enerations as in f6,9,111. and these values are 
tabulated. In the second steo of t~e simulation, the powers of the 

(l)Hacettepe Univ. "'ac. of Sc i enc e , Statistics Derrt •Ankara, TUPKEv 
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tests are compared a~a;nst each other when a single contaminant 
exist for various p, n and a values. At last, the performances of 
these procedures are examined applied to a numerical example. 

2.S0ME MATRIX NOTATIONS 

Let Y be an nx1 vector of reSQonse, X is an nxp matrix of ex­
. p1anatory variables with rank ~, a is a 9x1 vector of unknown na­

rameters and £ is an nxl vector of residuals. Let also Y= XB+£ 
be a multiple reoression model. In usual notation, the basic mo­
del for the case when some outliers exist can be expressed as ; 

E(Y) =EIT ~1= [~~ s .. (2. 1) 

Here the observations are divided into two 9rou~s, Yz consists of 
k observations which are bein~ considered as nossib1e outliers or 
influential observations, YI consist of the remainino n-k observa­
tions [7, 10]. The least squares residuals of this model is ~iven 

by, 

E::: Y-Xb = (I-R)Y = n-Rn -Rl2lrv~ =fe11 ..(2.2)L:RZ1 I-R~ l!~ Le~ 
-I I Iwhere b = (X'X, XIV and Rij= Xr(X'xj XJ ts a submatrix of
 

R=X(X'XfX ' [7,10].
 

Deleting the suspicious Yz observations ~ives the model 
E(Y1) = X1~ . On the other hand Oraner and John f71 offered an al ­
ternative model to model (2.2) by using the matrix form, 

E G~=~~ ~ ryJ .. (2.3) 

where y is a kxl vector of additional Qarameters. The estimators 
of s and yare respective1v ty*and c, defined by, 

* (' -)1 I .. (2.4)b::: Xl Xl XrY 1 

c::: (I-Rzz) 
-I "'2. .(2.5) 

Then extra sum of squares or outl ier sum of squares has been 
shown by Gentleman and Wilk [8] and also DraJ1er and John [6,7,9) 
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to be 
(2) -I 

QK:::: ez (I-R22 ) ez. .. (2.6). 

Estimate of cr2 is defined by, 

&2 :::: S2 :::: e'e/(n-p) :::: RSS/(n-p) . ,(2.7). 

3.S0ME EFFICIENT OUTLIER TESTS 

In this section we explain briefly the test statistics that 
are inclUded in the comparison. 

3.1 ,Gentleman and Wilk Test: Gentleman and Wilk [8] develored a 
test statistic QK for two-way tables. Then John and Draper 
[9] used this statistic for one, two and three outlier cases in 
two-way tables. Furthermore they tabul ated percentane ~oi nts of 
F, F * and F** (which are functions of QK) by usin~ simulation tech­
niques [6,9], It has been shown that QK is an efficient outl ier 
procedure and distributed as cr2-X~ under the null hypothesis [8] . 

John and Draper also used the following statistic i 

F = (n-p-k)QK/k(e2 e2 -QK) ,.(3,1) 

as a test criterion. F has a central F distribution with k and 
n-p-k degrees of freedom [61 • 

3.2.Cook Test: Cook r 3,4 1 proposed a test statistic based on 
. confidence elli~soids~for judgin~ the contribution of each data 

j' .-,­

point to the determination of the least squares estimate of B, 
This statistic is defined by, 

Cij' '= (b-b") 'X'X(b-b*)/ps2 •• (3.2) 

where band b* denote the estimates of 8 with and without the ith 
and jth data points. ith and jth elements of Y belong to the Y2 
response vector and X2 sUbmatrix. Cook and Weisber~ [51 considered 
the performance of this test statistic. Draper and John [7] 

(2) QK values given in this study are 1/100 of their actual values. 
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expressed Cij" as, 

Cij •• = c ' Rzz C/pS2 .. (3.3), 

and because of the equality 

Cij" = ~2 [c;K- ] 
3.3.Andrews and Pregibon Test 

c'R22 c = c'c-QK, Cij" 

: The Andrews and Pre~ibon 

is 

.. (3.4). 

statistic 
AP is based on matrix of X* = (X:Y), the matrix of explanator:' 
variables appended with Y vector. This matrix for model in equa­
tion (2.1) is, 

Xl* = (X:Y) .(3.5), 

and for mQdel in equation (~.3) is 

X2 * = (X:D:Y) .. (3.1;) 

where 0 = [~]. The Andrews-Pre~ibon statistic AP is defined as 

* * * * R1j" = IXZ'X21II Xl'X l' .. (3.7), 

ij •• denote the k subscrints selected to form Y2 [1]. Test statis­
tic is based on the ryroportion of volume in xt attributable to the 
k observations which are nossible outliers. Dra~er and John [7] 

established that. 
k

Rij"= (l-QK/RSS) II-R 221 = APlxAP2 =AP .. (3.8). 

where AP1= (l-QK/RSS) and AP2= I I-R22, al so pronosed as two new 
outlier tests. Then Tatlldil [12] showed that APl has a beta dis­
tribution with (n-9-k)/2 and k/2 degrees of freedom under the as­
sumption that APl and AP2 are inde~endent. Tatlldil also showed 
that APl and AP (which has a central beta distribution with 
(n-r-l)/2 and p/2 de~rees of freedom) tests can be used for test­
inq outliers in multivariate data. The critical values of AP and 
APl have been obtained by usin~ first and second order Bonferroni 
inequalities and these values have been tabulated for k=1(1)5 
p=2(1)9 i n=5(1) 30(5)5()(1'»120 and a= n.01,O.05,f).10 [12]. 

i 
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4. SIllULATION STUDY 

In this section. the ryercenta1e points of the test statistics 
QK. AP1. AP2. AP and Cij are obtained for each combination of o(num­
ber of parameters) and n(samr>le size) while k(number of outlier)=l. 
The percentiles are estimated from the equations (2.6). (3.4) and 
(3.8) by using t10nte Carlo techn iques , 500 samo les Ilre generated 
for each case. Then the ~owers of the precedures are obtained for 
the same values of the narameters. 

In the simulation study. a multirle renression model as 

y. = X· B+ ••••+ X1.' Bp + ~.1. 1.1. 1. . P ~ i=1.2 •••• n .. (4.1) 

is considered and it has two main stages. 

In the first stage of the simulation the following steps are 
employed. 
i) n values of first column of X matrix are filled with 1 while 
other nx(p-l) values of the p-l columns wi~~ the valup.5 0 and 1. 
ii) n values of the residual vector £ are qenerated from N(O.l). 
oopulation. 
iii) n values of the response vector Yare obtained from the equa­
tion in (4.1) 
iv) Test statistics QK. Cij • AP1. AP2 and AP are calculated from 
equations (2.6). (3.4) and (3.8). 
After repeating the process 500 times. the values of each test sta­
tistic are sorted in ascendinn order. Then the upper percenta~e 

points of QK and Cij and lower percenta~e points of AP1. AP2 and 
AP are recorded as critical values of these tests statistics. They 
are tabulated and given in A~ryendix A. Table A.l for p=2(l)5; 
n=10(5)40 and a=O.Ol.0.05 and 0.10. 

The second stage of the simulation consist of two substanes. In 
the first sUbsta~e all the above stens are emnloyed except a dif­
ference in the second step. That is a !lerturbation in the nth 
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value of the residual vector by a constant A= +1 (if generated val­

ue en negative - A is added, otherwise A is added). On the other
 
hand there is one more step, this is:
 
v) Calculated values of the test statistics are co~ryared with the
 
corresponding critical values qiven in Table A.l.
 
This process is also repeated 500 times and the number of the
 

cases where calculated values of QK and Cijare greaterthan their cri ­

tical values and calculated values of APl,AP2 and AP are less than
 

their critical values are denoted as their ~owers. These values
 
are tabulated in Ap~endix B. Table B.l.
 

In the second sUbsta~e the value of the constant A is chan~ed. 

In this case A= +2. The values obtained in the second substa~e are 
~iYen in the Table B.2, for the same narameters. 

5•.n. NIJ\1ERlf.AL EXn.rWLE ANI') DISCUSSION 

We demonstrate the test procedures considered in this study by 
usin~ a data set given by '1icke.v. Dunn and Clark and examined by 
Draper and John [71 and Little [101. The observations and their 
correspondin0 values of the test statistics are ~iven in the Table 
1• 

It is seen from the tahle that ohservation lq is identified as 
an outlier if QK and APl tests are used. whereas observ.ation 18 is 
identified outlier if AP2, AP and Cij tests are used. Furthermore 
the correlations between the values of the test statistics{columns 
of Table 1) are: 

Variable APl AP2 AP C· .1J 

QK -0.999 0.053 -0.539 0.295 
APl -0.053 0.539 ~0.294COR.MATRIX = AP2 0.812 -0.Cl3tl 
AP -0.960 

The resul ts of the outlier analysis and also the correlation 
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TABLE 1.A~e at First Word(X), Gessel Adantive Score(Y) and their 

correspond og Test Statistics Values.­

Case X Y '1K APl AP2 AP C.. 
~J 

1 15 95 0.043 0.998 0.952 0.950 0.009 
2 26 71 1.084 0.953 0.845 0.806 0.081 
3 10 83 2.598 0.887 0.937 0.832 0.072 
4 9 91 0.820 0.964 0.929 0.896 0.026 
5 15 102 0.857 0.963 0.952 0.917 0.017 
6 20 87 0.001 1.000 0.927 0.927 0.000 
7 18 93 0.124 0.995 0.942 0.937 0.003 
8 11 100 0.067 0.997 0.943 0.941 0.002 
9 8 104 0.107 0.995 0.920 0.916 0.')04 

10 20 94 0.479 0.979 0.927 0.908 0.015 
11 7 113 1.334 0.942 0.909 0.857 0.055 
12 9 96 0.150 0.994 0.929 0.923 0.005 
13 10 83 2.598 0.887 0.937 0.832 0.072 
14 11 84 1.925 0.917 0.943 0.865 0.048 
15 11 102 0.217 0.991 0.943 0.934 0.005 
16 10 100 0.021 0.999 0.937 0.936 0.000 
17 12 105 0.789 0.966 0.948 0.915 0.018 
18 42 57 0.881 0.962 0.348* 0.335* 0.678* 
19 17 121 9.686*0.580* 0.947 0.550 0.223 
20 11 86 1. 396 0.939 0.943. 0.886 0.035 
21 10 100_0..021 0.2,37 0.936 0.000, . 0.9.~9 .I • 'If .. 

Unusual values High Low Low Low High 
are 
~ 

matrix showed that QK and APl statistics tends to ~rovide similar 
results for outliers. In the discussions of the various authors 
such as Little [101. observation 19 was also identified as an out­
lier. AP2, AP and Ci j statistics a~~roximatelv ~rovide the similar 

results which was also mentioned in the ~revious works. These sta­
tistics are sensitive to influential observations which have much 
affect on the fitted e~uation. As a conclusion ~K is the most 

nowerful test amonq them. 

Acknowledqements : The author would like to thank Prof.Or. Aydln 
tlztijrk and Associate Prof'.Dr. Soner ~~nen for their helnfu l com­
ments and criticism. 
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~APPENDIX A	 CPITICAL VALUES OF TEST ~TATI~TJCS 

TABLE A.1.	 Critical Values of QK. API. A~2. An and Cii ~tatistics Obtained fram S~0 ~enerations 

for Various Values of nand p. . 

P: 2 3 4 5 

\est n n: 0.01 0.05 0.10 0.01 0.05 0.10 0,01 0.05 0.10 0.01 0.05 0.10 

10 3.424 1.981 1.60~ 3.R24 2.172 1.67R 4.6h~ ~.700 2.25Q 1.024 2.527 1.902 
15 3.783 1.986 1.542 3.217 2.961 1.542 1.616 2.685 1.845 1.192 2.710 2.027 
20 3.881 1.805 1.365 2.447 2.098 1.456 1.892 2.078 1.701 4.001 2.6~9 ~.101 

OK 25 3.588 2.678 1.648 4.599 2.486 1.Q84 4.165 3.208 2.131 1,961 2,466 1,772 
. 30 2,440 2.148 1.803 3.851 1,874 1.60n 4.140 ?,73? 1.5~4 2,~87 1.868 1.436 

35 3.617 2.328 1.840 3.345 2.553 2.052 3.096 2.562 1.640 1.511 2,01~ 1.597 
40 1.504 1.872 1.648 2.979 1.678 1,407 1,318 2.855 1.851 4.476 2.501 1.754 

10 0.389 0.589 0.649 0,437 0.563 0,660 0,197 0,412 0,475 0.301 0.410 0.466 
15 0.604 0,750 0.837 0,508 0.729 0.770 0.h44 0.701 0,774 0.414 n.5~4 0,687 
20 0,692 0.847 0.8Q6 0.724 0,801 0.852 0.662 0.785 0.829 0,660 0.725 O,R25 

APi 25 0.693 0.840 0.894 0.757 0,828 0.860 0,677 0.769 0.791 0.657 0.8~4 n,87~ 

30 0.819 0,868 0.889 0,770 0.817 0.836 n,727 ~,826 0.~~2 0,78° 0.8Q5 n.Q0R 
35' 0.843 0.881 0,921 ~.8h7 0.909 0.012 n.850 0.873 0,015 ~.77~ 0.81J 0,904 
40 0,900 0,917 0.938 0.859 0.905 0,91° 0.846 0.884 0.~12 0.R13 0.8~1 n,q~8 

10 0,421 0.543 0,579 0.387 0,428 0.513 0,282 0,141 0.102 0,137 0,lR7 0,277 
15 0.545 0.612 0..718 0,445 0,469 n.5H 0.:152 0.45ft 'l.4Cl-R 0.171) 'l,{~04 n.S21 
20 0,685 0,741 0.768 0,565 0,640 ~,682 0,501 0,59:1 0.~25 0.528 0.581 ~,~14 

AP2 25 0.702 0.817 0,819 0.623 n.71S 0.777 0,571 0,657 0.692 0.623 0,680 0.732 
30 0,771 0.829 0.881 0.620 0,711 0,769 0.644 0,725 0,760 0.670 0.725 0.753 
3S 0.770 O,82Q 0.862 0.681 0,764 0,810 0.769 0,801 0.810 0.704 n.756 0.778 
40 0.839 0.875 a.88q ,0.677 0,743 0,796 0,805 0.818 0,831 0.776 0.800 O.Rno 

, 

• 
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TABLE A,l.(Continued) 

P: 2 3 4 5 

Test n a:0~010~0~ 0,10 0,01 n,05 n,10 O,n1 ~.n5 O,ln O,n1 n,05 n~ln 

10 0,247 0,416 0,456 0,264 0,370 0.413 0,108 0,174 0,226 ",074 n.146 n,lhCl 
15 0,513 O,56LO,631 0,369 0,448 0,492 0,326 0,370 0,440 n,264 n.152 n,181 
20 0,618 0,671 0,728 0,449 0,565 0,~18 0,434 ",521 ".552 n,45Q n,SO" n.541 

AP 25 0,665 0.780 '0,809 0,511 0,623 0,718 n,478 0,548 0,646 n,452 0,605 0,663 
30 0,746 0,808 0,819 0,619 0,647 n,711 O,~06 O,6~5 0.705 0,616 0.669 0,706 
35 0,743 O,79tl~~~~3 0,625 0,727 n,81~ ",711 n,7~4 n,77~ n,617 O,~85 0,728 
40 0,803 0,852 0,8610,629 0,743 0,796 0,756 0,779 0.790 0.658 n,744 n,767 

10 ~,413 0,688 0,487 1,154 0,471 0,308 '1,463 1,017 0,790 2,9n6n,900 n.666 
15 0,501 0,258 0,148 0.916 0,374 0,298 0,747 n,471 0,349 n,870 0,518 ",183 
20 0,404 0,226 0.161 0,884 0,288 0,116 0,551 O,3~1 n.2"5 0,407 0,362 0,216 

c· .l.J 25 
30 

0,165 0,104 O,n76 
0,160 0,128 0,089 

0,430 0,282 0,135 
0,274 0,147 0,092 

0,553 0,408 0,237 
0,300 n,l~4 n,l18 

0.426 0,206 0,121 
0,298 ".150 0,105 

35" "O,288,O,170,/),110,0.155J).1180..096, 0,170 0.125 0.n810,2960.181 n,096 
~o 0,160 0,n93 0,"80 0,116 0,064 0,048 0,157 n,129 0,091 0,109 n,143 n.ln1 

(X) 
(J1 

... 
"II>, 



APPENDIX B : POWERS OF TESTS OBTAINED F~O~ MnNTE-CA~L0 SIMULATIONS 

co 
O"l 

TABLE B.l. ?owers of the Tests 
and a while A= 1. 

~K, API, AP2, AP and Cij for various Values of n, p 

a: o.r» 1),05 n.ll) 
P n Test: QK API AP2 AP CLj nK AnI AP2 An CLi n~ API AP 2 An eii 

In O,2n n.ln 0.n2 n.n5 O,n4 n.4b n.35 n.06 n.26 n.lS n,5Q n.47 n.ll n,12 n.2n 
15 n.21 0,18 n,OO 0.18 n.16 n,55 n.43 n,n2 n,44 n.42 n,65 n,68 n.11 n,40 n.55 
2n f),ln n,05 O,n2 n.lO 0.n7 n,56 f),54 n.ns n,ln n.2l I),~Q n,7l n.ll 1),1~ 1),29 

2 25 
3n 

0,24 n,06 n,nl n,13 0.30 
0,51 0.29 0.02 0.21 n,23 

0.45 n.44 n.ln n,45 n,42 
1).58 n.30 f).ln 0.39 n.2Q 

n.nS n,n8 1),15 n.58 n,52 
n.n7 n,5l n,17 n.42 n.37 

35 
4n 

0,24 n,23 0,03 0.13 n,n9 
0.18 n.34 0.03 0,16 n.lS 

0.44 n.40 l).n4 n,21 n.22 
n,S5 n,43 n.n7 n,37 n.3S 

n,6l n.62 n.n8 n,37 1),18 
n,n5 n,59 n.n9 0.46 n.4n 

10 n,22 n,15 0.n4 n.12 0,03 0.42 n,32 n.os n.28 0,2n n.S5 n.45 0.16 n.35 n.35 
15 n.20 n.07 n,02 0,03 n,n2 n.24 1).17 n,03 n,lO O.lQ n.n5 n.47 n.ns 1).26 n.14 
20 0.3n 0.19 o.nl O,n7 n.02 0,51 0,36 o.n} 0,19 0,31 n.7l n.4Q f),nQ 0.3n n,48 

3 25 0.19 0.27 0,02 0.02 n.OS n,5l n,4S n,n6 n,lS n.IS n.nS n,56 n,f)q n.45 n,47 
30 0,27 0,07 0.01 0,05 n.lq 0.62 0,35 0,nl n.ll n,42 n,nS n,4Q n,12 n.ll n.57 
35 0,37 0,43 0.00 n,Ol n,24 0,54 0.56 O,n2 n,21 0,29 ·0.62 n,76 0.09 n,54 0,37 
40 n,30 O.2n 0,00 n,n2 n.2l O,n3 0.43 I),()n n,I)Q n.51 1),84 (J,6n n.n2 n.23 n.59 

--._----­ . 
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TABLE B.1. (Continued) 

".10
 
qK API AP2 AP Cij.
 

n.45 n.11 n.ln n.2n fl.18 
n.58 fl.59 fl.fl5 fl.26 fl.21 
n,61 n,6? fl.l1 fl,24 0.44 
n.sn n.24·0,14 fl,32 fl,25 
fl.72 fl.64 fl,fl9 fl.31 n.44 
fl,64 0.54 n.22 0.37 n,43 
0,65 n.57 fl,12 n.37 n.38 

fl,16 ",26 0.18 fl,2fl fl.18 
0.40 n.41 n.1 0 n.29 0,28 
n,48 n.S7 0.2fl n,32 O,2Q 
n.s7 0,58 0.26 1).36 n,41 
fl,68 n,64 n.2no.43 0.44 
0.61 0,52 n.21 n.44 0,51 
n,64 n.54 n.18 n.3l fl,26 

" 
a: 

n Test: 

4 

In 
15 
21) 
25 
30 
35 
liB 

5 

10 
15 
21) 
25 
30 
35 
40 

t·. 

o.oi 1'1, os 
OK API AP2 AP C; j OK API AP2 AP Ci j 

0.11 O,fl5 0,01 ",n5 fl.06 n,16 0.25 0.fl6 n,lo fl.14 
0,23 0.3rrfl~no 0,09 0.060.4n O.4fl n.fl2 n.1S fl.ln 
0.20 1).09 ~.01 0.n8 0.10 n.53 n.44 fl.fl5 0.22 n.17 
0.20 0.11 I).no 0.n6 0.1)7 0.25 0.22 1'1.09 ",14 n,ll 
0.20 0.07 .O~Ol 1),12 0,13 n.41 0.31 n.1)6 0.18 f'l.28 
O.3n 1).24 0:03 n.13 0.22 0.35 1'1.31 n.ll n.34 0.26 
0.32 0.22 0.08 0.24 0.17 n.40 n.44 O.I)~ n.11 n.26 

0.19 O,n7 0.n1 0.04 0.010~290.1S n.05 n.13 n.1S 
0.14 0,04 0.03 n.ns 0,06 0.36 0.17 0.17 n.23 O,lQ 
n.16 0.17 0.07 0.17 0.12 0.35 n.28 0.13 0.26 n,18 
0.12 0,05 0,06 0.11 n.ll) n.41 ",37 n.17 0,22 0.20 
0,34 0.23 0.06 0.22 0.11 0,56 n,54 n,ll fl,31 0.32 
0.31.0.16.0,1)6 0.160.12 0.50 ..0,28 O,lS ..fl.2s ..n.21 
0,14 O,O~ O,OS 0.07 0.n4 fl.45 0,38 0,13 0.25 fl.lS 

en 
-...J 

...
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TABLE B.2. Powers of the Tests OK, A))l, ATJ2, A'P and Cii for Var Loue Values of n , p 
CD 

and a' while A= 2. 

P 

2 

3 

(1: 0,1)1 

nTelt:QK -,API· AP2 A'P C~.j 

10 
15 
20 
25 
10 
35 
40 

In 
15 
20 
25 
30 
35 
4n 

1).~0 0,38 n,02 1).230.10 
n,87 0,57 0,1)2 0,50 0,24 
0,81 0,54 0.00 0.52 0,27 
0,96 0.45 0.00 0,54 0.40 

1.00 0,91 c.oo 0.77 n.7(, 
0.96 0,83 1),00 0.61 n.14 
0,95 0.99 0,on 0,81 0,55 

0.63 0,46 0.04 n,38 1),06 
n,86 0.36 0./)1 0.29 1).18 
0,95 n,73 /).01 0.27 0.22 
0.79 0,82 0,'11 1).31 '1.7.5 
0,89 1.55 0.00 0.25 n.27 
0.9-0 0.92 0.02 0.25 0,61 
0.97 0.72 n,I)l 0,48 0.55 

• 

0,1)5 

f)K - ATJl - A1'2 A'P - ~i i. 

0,q5 0,75 1),1)6 1),61 1).21 
0.95 0.87 0.06 0.~6 0.47 
1.1)0 0.99 ~,on 0.01) n.~~ 

0,99 0.95 l).n9 I).9~ 0.64 
1.M 0.007 0,00 1).96 1).90 
1.00 1.(1)'/).04 n.84 n.55 
1,1)0 1.nn n.on 0.96 n,90 

0,85 0.~7 0,n4 0.62 n.44 
0.87 1).85 1),1)3 n,51 0.49 
0,98 n.90 1).f)3 0,64 n,45 
0.~7 n,05 0.04 0.61) 0.40 
0.99 0.86 0,04 0,37 0,41) 
1).99 0.9.8 0,04 1).62 0.71 

'I. If) 

OK , TJ1 AP2 AT) Cij 

0,97 0,81) 0.11 1),72 0,17 
O.Q7 n.95 o,ln I). 7~ 0,72 
1."f) 1."'1 0,n1 n.o~ n.R~ 

1.(1) l,nn 0.12 n,Q7 n.70 
1.01'1 10M 0.n5 0,98 0.!'!7 
1. n/) 1./)n n.n~ 1).94 0.61 
1.00 1.l)n 0.1)0 0.9~ I).Ql 

0,89 0.80 n.16 0.72 n.57 
1).97 0.91) 0,11 0.62 0,54 
1.0n 1).98 n,n9 0.78 n.87 
1.00 0.99 n,n8 1).9n 0.84 
1).99 0.91 1).07 0,74 n,71 
O,9Q 0.99 1).12 n.94 0.71 

n,09 0,91) 0.01 /),59 0,58' l.flO 1.nn 0.01 0.68 0,70 



TABLE B.2. (Continued) 

ex: 1).'11 n.1)5 n.1'l
 
P n Test: OK AP1 AP2 A.P Cij 11K AP1 AP 2 AP Cij, ()K A.P 1 AP2, AP Cij
 

In 
15 

0.58 0.11 1),1)1 1).'14 0.11) 
1).65 0,66 O.()2 0,27 n.22 

n.~7 

0,86 
n,41 1).'11 n,15 n,17 
n.7~ '1.'15 1).4'1 '1.17 

1).lln 
n,Q1 

n.~7 

1).8Q 
'l.1)1 'l.11) 'l.28 
'l.ln '1.59 n.52 

2n 1).75 n.61 l).n2 1).32 n.1~ 1).95 1).81 'l.'15 1').55 n.48 n.98 1),91 n.1l 'l.67 O,~5 

4 25 0,74 1).45 o.nl) 0.22 1).23 1),91 1).81 n.I)Q 1).45 1).27 n.Q7 1).86 n.14 n.71 'l.54 
30 0.81 1).45 'l.l)n 0.23 1).28 l,nl) n.8~ n,nn 0,41) n.~~ L nn l,n'l 1).1)1 'l.51 n.~7 

35 n.97 0.85 n.1)2 ~.44 1).2~ 1.f)1) n.9A 1).02 n.71 1).42 L nn 1.n'l 'l,'15 '1.71 'l.51 
41) O,Q7 n,84 0.n1 'l.33 1).52 1.0n 'l.Q4 1').1)1 1).54 n.78 1. nn l.'ll) 0.05 n.81 0.81 

11) 0.51 0.3n 0.03 O.Oq '1.1)2 1).~4 1).54 n.1)5 1).13 n,24 '1.71 1).61 '1,18 n.4n n.32 
15 n.71 n.28 0.03 0.25 0.16 'l.81 1).~5 1).17 n.48 '1.12 n.87 '1.sn n,l~ 'l.52 n.42 
21') 'l.41 0.51 n.09 1).48 1).4n 1).85 n.?n 1).17 0.5Q '1.44 n.Q2 n,88 'l.lQ 0.74 '1,69 

5 25 0.79 ~.43 0.07 'l.25 0.27 1').~1 n.88 0.1')8 'l.66 '1.57 n.96 n.97 '1.17 1).84 o,8n 
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OZET 

Bu cal rsmada daha 1nce Gentleman - !~ilk. Cook ve Andrews ­
Prenibon taraf indan reeresvon modellerindeki ayk i r t de~erlerin 

(outliers) test edilmesi icin ~nerilen y~ntemler incelenmistfr. 
~onte-Carlo benzesim yontemi kullanllarak bu testlere iliskin kri ­
tik de~erler ~=2(1)5; n=10(5)40 ve a=O.Ol. 0.05.0.10 icin tablo­
l astt r-t lmts t i r , daha sonra ise yine aym parametre ler i cin y~ntem­
lerin g~C de~erleri bulunarak karSllastlrllmlstlr. Son olarak da 
bu yontemlerin ~ecerlilikleri (elde edilen kritik de~erler kulla­
m l arak) sayi sal bir ornek 'Izer inde incelenmistir. 
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PARTIAL SOLUTION FOR 
STACKELBERG DISEQUILIBRIUM IN DUOPOLY 

( 1) M S ( 1 ) ..E S " ozer • . ucu 

In this study. we obtained a partial solution for the
 
Stackelberg disequilibrium situation in a duopolistic market.
 
by assuming the sum of the profit functions of two firms as
 
the objective function of the multicriterion decision making
 
problem and using two-person zero-sum game approach.
 

In order to get better understanding of the solution an
 
application is given in Section 4.
 

Key	 words: Stackelberg disequilibrium. Duopoly 

I. INTRODUCllON 

In a duopolistic industry there are two sellers.There 
rare	 no generally accepted behavior assumptions for duopo­
lists as there are for perfect competitors and monopolists. 
Different assumptions produce different solutions for 
'duopolistic market. The well known solutions are cour not , 

collusion. Stackelberg. market shares and kinked demand 
curve, 

In the Stackelberg solution one duopolist is leader 
,while the other is follower. Duopolist. I is leader in 
the sence that he knows II I S reaction function. Each duopo­
list determines his 'max.imum profit levels from both leader­

:ship and followership and desires to play the role which 

(1)	 H~ccttcpe University. Ficulty of Science. Department of Statistics, 

Ankara. TURKEY. 

,. '. 
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yields the larger profit. Four outcomes are possible: i) I desires t 
be leader and II a follower, ii) II desires to be a leader and I a 
follower, iii) both desire to be followers or, iv) both desire to- be 
leaders. The first two outcomes result in a determinate equilibrium 
which is known as Stackelberg solution. The third outcome results in 
Cournot's solution as shown in Henderson and Quandt [2,pp.230]. The 
fourth outcome is known as Stackelberg disequilibrium. 

In this st4dy a solution for the Stackelberg disequilibrium case 
l ,. ,1 

is obtained. In the duopolistic market when each of the duopolist 
desires to be leader, each duopolist thinks that he knows the other' 
reaction pattern and determines the profit-maximizing supply based a 
the other's reaction function but neither of the reaction functions 
is observed and Stackelberg disequilibrium comes into existence. Und 
this condition, over-production and different prices result in the 
market. After they become conscious of this situation they may reach 
an agreement in determining the price and the profit shares to 
maximize profits of each .other. This leads the market to a new part 
solution for the Stackelberg disequilibrium case. It is a partial, 
'solution and not a definite solution because it comes about only if 
agreement between duopolists is reached. 

2. METHOD 

A game with two players where a gain to one player equals a loss 
to the other is known as a two-person zero-sum game [3,pp.339]. Each 

. player has a finite number of strategies. The matrix which summarize 
the outcomes in terms of the gain (or loss) to one player, for all 
possible strategies of both 1l1ayers.-is -cal led the pay-off matrix. 



The entries of the pay-off matrix lT kt (k= 1, .. 'I'P, t= 1, ... .p) 

represent the expected gain for player I when he uses strategy k 
and player II uses strategy t. Let Ak be the probability that. 
player I will use strategy k, and ~t be the probability that player 
II will use strategy t. then 

P A =1 ..(2. 1) l: k
 
k=l
 

l:
P JI. t=1 J.I t ~ 0 for all t .(2.2). 

t=l 

The expected pay-off for the game is given by, 

p p
 
p =~ l: IT kt Ak J.I t
 .,(2.3),k;;;'l t=l 

Let Po be the minimum value of P and pO be the maximum value of P. 
T~e solution of the game con be obtained by solving either of the 

following pairs of linear progranvning problems r 1,1973]: 

1 ~ Min (-PQ ) =k~l	 .. (2.4)r k 

s.t.	 ~ lT kt rk~l, ..(2.5)
 
k=l
 

or 

..(2.6)Max ( 1 )T 
p -. 

S.t. ~ St ~ 1 s ~O . .<2.7) 7l kt t 
t=l 

At the optimality, 

* p* = pO = P*	 . ,<2.8) o 
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and 

. (2.9)
 

where P* is optimal solution. 

3. MODEL 

Two firms are assumed to proQuce a homogenous product. The inverse 
demand function states the price as a function of the aggregate 
quantity sold: 

.. (3.1)
 

where p is price. ql and q2 are quantities of the duopolists 
outputs. The profit of each equals his total revenue less his cost. 
which depends upon his output alone. 

. .(3.2)
 

,,(3.3)
 

~Ihere lr1 and 11'2 are profits. Rl and R2 revenues. C1 and C2 costs of 
the first and the. second firms. 

By assuming the sum of the profit functions of the firnls as 
the objective function of the multicriterion decision making prob­
lem and using two person zero-sum game approach we may reach a par­
tial solution for the Stackelberg disequilibrium situation. 

Solving for tne leadership functions of I ur~ 'II "individually
 

we can determine q:'s and 1I'.·s under Stackelberg assumptions:
 
1 1 

Forming pay-off matrix with entries of profits of the firms under 
leadership function of each of the firms. then using two person 
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zero-sum game method. optimal weights X.'s are obtained. and the
1 

compromise objective function "is. 

2 
'Ir= ~ X . 'Ir1 (q . ) . ,(3.4)

i=l 1 1 

where Xi's are the optimal weights that firm I will use strategy i. 

Then 

• 

4. APPLICATION 

We use the example in Henderson and Quandt in order to get 

a clear explanation of the partial solution [2.pp 226-231 l . 

p =100-0.5 (ql q2) ..(4.1 ) 

Cl =5 ql . .(4.2) 

_ 2 
C2 ­ 0.5 q2 ..(4.3) 

and the profits of the duopolists are 

.. (4.4)
 

..(4.5).
 

For maximizing conditions of I and II we set appropriate 

partial derivatives equal to zero: 

()'lr
l

d-"~-= 95 -ql-0.5 q2 = 0 . .(4.6)
ql 

chr _ 
~ 2 = 100-0.5 ql -2 q2- 0 •. (4.7) • 

2 
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The corresponding reaction functions are. 
q(= 95 -0.5 q2 .. (4.8) 
q2== 50 -0.25 ql .. (4.9). 

The max imum leadership profit of I is obtained by 
substituting II's reaction function (4.9) into lIs profit 
equation(4.4). 

..(4.10)
 

and maximizing with respect to ql we obtain 

ql== 93.33 ~l== 3266.66 

Under the leadership of I. the II's production and profit are 

and ~2 =711.11 • 

That is 

-Lq - (93.33. 26.66) . 

Likewise for the II's leaderahip and lIs followership 
assumptions the profit function of II is 

. .<4.11)
 

and the solutions for maximizing are 

q = 35 ~2=9l8.752 

ql == 775 1T 1 = 3003. 125 

that is 

Each duopolist receives a greater profit from leadership. and 
both desire to act as leaders. Under this situation the reaction 
functions will never be observed and Stackelberg disequilibrium 

, . 
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The pay-off matrix with entries 'II'.. is fanned aslJ 

* Iq *t': q 

'1'1 3266.66 3003.125 

'11'2 . 711.11 918.75 

Solving for optimal profit shares as in the case of two-

person zero-sum game technique, we get 

3003.125 Al~ 918.75 A2 ;> p 

where P is the value of the game, and 

A*1 = . 440678
 

A* = .559322
2 

Maximize '1'= A1 7/'1 + A2 '1'2 

=A1(95 ql ~0.5 q/) - 0.5 ql q2 

. 2 
.+A~ (l00 q2 -q2 ~0.5 ql q2 ) • 

For maximization 



The solutions are 

ql =77 .64.705911 

~2= 15.29411744 

In that case we obtain the profits as 

11'1 = 3768.17
 

11'2 =701.73
 

11' = 4469.2.
 

Also different solutions of the duopolistic market under 
different assumptions are summarized in lable 1 for comparison. 

Table 1.	 Eguilibrium Values of the Price. Quantity Produced and 
Profit of the Duopolistic ~~rket 

ell I h.~I,", C....r .... t St~ckr 1WI',! SoI"t I"n" H.... 
_Sulullun SOI.. tl .... I C~U. " " ". SOl.. l Ion._----­

""r~."l rrl<e ~1.a5 45 40 41.75 S).~~ 

Ikrket 'IS \10 IZO lIZ.5 90:.'" 
>,.., rt,.. I 90 80 93.33 11.5 n.ss
~'I'- ... FI ... II 5 30 iIi.66 . 3S 15.29•• =' 
.:".. "-, ~
"'... 

Ivrkl:t 4525 "100 3~1J.18 3921.1175 ""fi9.!!.. 
Ora I 411S 3;,nn 3266.66 .3003.125 31LO.2... 

0 
F1 .. II 2!oO 900 m.lI!> 918.75 701.1~ ... -_._---­

a) The entries are taken from Henderson and Quandt 2. pp 175-186. 
b) This entry is different from the book. 
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aZET
 

Bu ~all~mada, iki satlclll piyasada, iki firmanln kar fonk­
siyonlarl toplaml, ~ok ama~ll karar fonksiyonu varsayllarak, iki ­
ki~ili slflr toplamll oyun yakla~lml ile Stakelberg dengesizligi 
durumunda klsmi ~ozOm elde edilmi~tir. 

~ozOmOn daha iyi anla~llabilmesi i~in bir uygulama da ya­
pi lm st i r , 
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A DYNAMIC REGRESSION ANALYSIS 
OF THE ENERGY CONSUMPTION BASED ON INCOME 

C. Erdemir (1) S. Cakmak (1) 

Based on annual data a dynamic regression model is built 
for the endo~enous time series Y = ener~y consumption and 

. . t . 1exogenous ser~es x = per cap~ta gross nat~ona product. 
Dynamic regressiontmodels of which error terms fits to 
AR(n. AR(2), MA(n. ARMA(1. n . stationary stochastic processes 
are reviewed and maximum likelihood estimators of these models 
are introduced. It is concluded that the dynamic regression 
models are found more efficient than the classical regression 
model. 

Key words: Dynamic Regression~ ARMA(p.q) Models. ML Estimators 

INTRODUCTION 

One of the assumptions of the classical linear regression model 
is the serlal independence of the disturbances, that is 
E(uu') =iI . 

n 
A general linear model can be written in matrix notation in 

the following manner: 

Y = Xb + u 

where. X is n x k matrix of the observations on exnlanatory 
variables and is assumed to be full rank, b is a k x 1 vector 
of parameters to be estimated, u is an n x 1 vector of stochastic 
disturbances. Fundamental assumptions of a normal classical 
linear regression model can be written out in the following 

(l)Hacettepe Univ., Fac.of Sci., Statistics Dept., Ankara,TURKEY 
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manner: (1) Zero mean assumption: E(u) ~ O. (2) Homoscedasticity 
assumption + non-autocorre1ated error assumption: 
E(uu') = iI when In is an n by n identy-matrix. (3) Lackn, 
of simultaneity assumption: E(X'u) = O. 

In practice, using ordinary least squares (QLS) estimates 
when disturbances of the model are autocorrelated is the possi­
bility of non-sense relationships between time series when in 
reality there is no correlation between the series under investi ­
gation. This point was first emphasized by Cochrane and Orcutt 
[3] and was later on formalized by Champernowne [2]. In order to 
avoid many complications and spurious results of the QLS regres­
sion, some models are proposed; called dynamic regression models, 
where it is assumed that the ut error term follows a stationary 
stochastic process such as autoregressive process, AR(1), first 
order moving average process, MA(1), second order autoregressive 
process, AR(2) and the first order mixed autoregressive moving 
average process, ARMA(l,1): A brief review of the literature 
on the problem of dynamic regression can be found in Paseran 
and Slater [71. 

DYNAMIC REhRESSION MODELS 

Dynamic specifications of the models may occur in the 
stochastic parts as explained above. Besides that, the dynamic 
specifications of the regression model may occur in the deter­
ministic part, named the distributed lag model. So, general 
linear regression equation can be written as: 

k-2 00 , , 

Yt~ L b.xt· + bk 1 E A
J 

xt_' k_1+bk. E A
J 

Xt-J'.k+Ut
i =l' 1 - j =0 J , J =0 2 • 

where ut is assumed to be specified by the process 

ut - P1 - P2 ~ YVt - 1 + vt 'ut-1 ut-2
 
and vt is a pure random process. The notation P1 is used for
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autoregressive parameters and Y is used for moving-averaqe 
process parameter. A is the parameter of the lao distribution 
and is assumed to be in the range 0 ~ A < 1. 

The general model can be reduced to specific dynamic models 
under some assumptions on the parameters of >.., o , Y such as: 

1) A1 = A2 = P1 = P2 = Y = 0, ordinary least squares, so
 
that ut = vt.
 
2) A1 = A2 = P2 = Y = 0, first order autoregressive error 
specification with fixed initial value. AR(1), so that, 

u - P1 ut _1 = v ' t t 

3) >"1 = A2 = P2 =y= 0, first order autoregressive error 
*specification with stochastic initial values, AR (1), so that, 

Ut - P1 Ut-1 = vt' 
4) x1 = >"2 = Y = O. second order autoregress i ve error 
specification with stochastic initial value, AR(2), so that 

- - P2 "i-z =ut P1 ut-1 vt' . 

5) >"1 = >"2 = P1 = P2 = 0, first order moving averaqe error 
specification, MA(1), so that 

u = v + YV ­t t t 1 

6) >"1 = A2 = P2 = 0, first order mixed autoregressive-movinq 
average error specification, ARMA(1 ,1), so that 

ut - P1 ut-1 = YVt -1 + vt' 
more dynami c model s depending on these parameters can be written. 

7) P1 = P2 = Y = 0, distributed lag model with non-autorecor­
related disturbances, so that 

A1 ~ 0 and >"2 ~ 0 and ut = vt' 
8) P2 = Y = 0, distributed lag model with first order auto­
regressive error specification. so that 

>"1 ~ 0, A ~ 0 and u - P12 t ut_1 = vt'
 
Paseran and Slater [7].
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The estimation method is based on maximum likelihood (ML) 
criterion as well as most of the estimation procedures currently 
used for all dynamic models. The ML estimators of the models 
with autocorrelated errors are computed using some iterative 
techniques. 

These techniques carry out the estimation of dynamic regression 
models with autocorrelated errors under three different error 
specifications: (1) The Cochrane-Orcutt iteration procedure to 
compute P1 for AR(1) error specification with fixed initial 
values. (2) the inverse interpolation to calculate the AR(1) with 
stochastic initial values. (2) the modified Newton-Raphson 
iterative technique to compute P1 and P2 for the AR(2) error 
specification with stochastic initial values [3, 4, 1 ] • 

Box and Jenkins [11. gives the ML estimators of the parameters 
of the regression model with first order moving-average disturb­
ances. The derivation of the likelihood function of the ARMA 
process has been pursued recently by Newbold [6]. 

AN APPLICATION 

In this chapter. a dynamic regression model of the consumption 
of energy was built based on per capita gross national product 
in 1968 retail prices in Turkey. The annual observations 

for the variables are shown in Table 1. Some apPlications on 
the same data was done by Kocberber [51. Although use has tried 
to be made of first and second differences due to the autocor­
relation in the data. nonacceptable results were obtained. In 
this study some dynamic regression models are tried and ML 
parameter estimates for different error specifications are 
given. The empirical work has been performed with computer 
programs developed by Pesaran and Slater [7]. Programs have 
been modified and applied to the B6800 system. 

ML estimates of the parameters for dynamic models with differ­
ent error specifications are given in Table 2. 
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Durbin-Watson test statistics, log-likelihood criterion, deter­

mination constant and error variance are shown in Table 3. 

TABLE 1. Annual Data of the Variables (1951-1979) 

y: Energy Consumption (Thousand tons coal equivalent) 

10281 10693 11822 12251 12568 13488 14523 15172 

15394 16356 16472 17790 . 18832 20454 21142 22907 

23863 25541 27447 27910 29764 33326 36390 37703 

40778 45084 49286 49767 47778 

x:	 Per Capita Gross National Product in 1968 Retail Prices 
(1000 TL) 

2034.0 2218.8 2396.5 2261.5 2374.0 2390.5 2494.0 

2534.1 2563.0 2576.0 2559~9 2652.8 2838.9 2882.8 

2900.9 3169.2 3220.2 3349.5 3443.3 3445.8 3826.6 

4015.9 4109.5 4304.1 4525.8 4784.3 4868.8 4905.8 

4768.2 

Source of data: 1985 Statistical Yearbook of Turkey 

...
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4 

5 

TABLE 2. Error Specifications and Related Models 

Model Error 
Number Specification Model 

AR( 1)
 
Fixed Initial Values
 

2 *AR(1)
 
Stochastic Initial Values
 

3	 A(2) 
Stochastic Initial Values 

Yt = -19924.8 + 13.75 xt 
u = 0.50 ut-1 x vt •t 

Yt = -18629.4 + 13.43 xt 
= 0.55ut ut-1 x vt 

Y = -13609.3 x 13.40 xtt 
u = 0.63 u ut t_ 1-O.l7 t_2+v t 

MA(1)	 Y = -18958 x 13.50 xtt 
ut = 0.53 xt - 1 x vt 

ARMA( 1.1) Yt = 18665 x 13.42 xt 
ut - 0.20 Ut_1=0.4lvt_1+Vt 

6	 Stochastically Yt = -19197.1 + 13.55 Xt 
Independent Error ut = v(SIE)	 t 
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TABLE 3. The Test Statistics of the Models 

Model Error Durbin- Log­ R2 2 
cr 

No. Specification Watson Li keli hood Residual 

1 AR( 1) 1.76 -195.03 0.99 1161 
2 *AR( 1) 1.82 -202.84 0.99 1122 
3 AR(2) 1.93 -202.49 0.99 11 09 
4 MA(l) 1.70 .-202.84 0.99 1135 
5 ARMA( 1.1) 1.86 -202.67 0.99 1124 
6 SIE 0.90 -207.06 0.90 1307 

The detennination constants, R2, obtained for each model area 
very high. There is no statistically significant difference 
between the constants. On the other hand, it is shown that the 
error variances are not different from each other except in the 
sixth model. Hence, the 10g-likQlihood function value is an ac­
ceptable criterion for selecting the best model. Finally, the 
first model was accepted as a useable model which has a maximum 
log-likelihood value. 

CONCLUSION 

As a result, a dynamic moder which can be used for prediction 
and description is propose~ at the end of the modelling process. 

It has been shown that dynamic regression models must be 
prefered when data arises as a time series and autocorrelations 
cannot be removed from residuals. 
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tYZET 

Dlssal degisken Yt=Yllllk enerji tUketimini icsel degisken 
xt=kiSi baSlna ulusal gelir olan t yllllk veriye dayall bir 
dinamik regresyon mode1i kuru1mustur. Hata terimini AR(l)t 
AR(2), MA(l), ARMA(l ,1) duragan stokastik sllrec lere uyduqu 

dinamik regresyon mode11eri ince1enmis ve bun1arln en cok 
olabilirlik tahmin edicileri tanltllmlstlr. Sonucta, dinamik 
regresyon modellerinin klasik regresyon modellerine gore daha 
etkin oldugu gorU1mUstUr. 
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PREPERATION OF FINAL TYPESCRIPT* 
- APPLIED AND EXPERIMENTAL SCIENCES ­

E. Board( 1) 

This article gives instructions for preparing the final 
typescript of your paper. It is laid out according to these 
rules, and may be used as a guide. Please indent the abstract 
three spaces from the left and right margins, as shown here. 

Key words: Type styles, Layout, Spacing 

INTRODUCTION 

The rules below amplify the mrormat ton given in [1] , and aim 
at giving the bulletin a uniform and pleasing appearance. Please 
follow them carefully. The Editorial Board are under no ob l igation 
to publish typescripts not conforming to these rules. Please note 
that the page numbers and publication identifier (top of page one) 
will be added during publication, but you should number the pages 
well outside the printing area, so they may be kept in order. 

~ATERIALS AND METHODS 

The final typescript should be prepared on an electric typewriter 
employing a black plastic ribbon and one of the following typefaces 

(a)	 For the main text:
 
IBM letter Goth 96 or OLYMPIA 808
 

(1) Hacettepe University, Faculty of Science, Ankara, TURKEY. 

* Replaces all previous instructions. 
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(b) For the abstract, references, footnotes, subscripts, and super­
scripts: 

IBM Prestige Elite 96 or OLYMPIA 802 

12 Pitch (12 characters per inch) should be used throughout. The 
main title and subheadings should be in upper case. Bold face type 
may be used to highlight newly defined terms, important phrases, etc. 
Do not use underlining. Special symbols, foreign letters, etc., 
should be typed whenever possible. 

The typing area is 14cmx22cm, giving 52 lines and 66 characters 
per line at 12 pitch. Only material within this area will appear in 
print. 

The main title and subheadings should be centred. Displayed 
formulae, etc., may also be centred if desired. 

There should be an indentation of three spaces at the beginning 
of each new paragraph. Part identifiers, such as (a), (b), etc., 
should also be indented three spaces from the left hand margin. 

The (first line of the) ~ain title should be typed on line 8, 
the authors name(s) on line 14 and the first line of the abstract 
on line 17. Where there is more than one author the format for the 
names is A. Abe I ( 1), B. Cox ( .), ••• • Af.ter the fi rst page the text 
should begin on line 3. The following table gives the rules for line 
spacing. 

TABLE 1. Line Spacing. 

Spacing Application 

1/2 { Subscripts, superscripts. 
1 { Abstract. Two lines of the same reference or footnote 

Norma I text. Between two references or footnotes. 
Double-lined title or heading. 
Bet ween text and heading to a table or figure. 

2 { To emphasize a formula or block of text. 
2 1/2 { Between a subheading and following text or item. 
3 1/2 { Between text and following subheading. 
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SUBSECTIONS
 

The manuscript should begin with an abstract and introduction, 
and end with a Turkish summary (ozet ) and references. The main body 
of the text should normally be collected into unnumbered sections 
headed materials and methods, results, discussion. However other 
headings may be used if the above are inappropriate. 

TABLES ANp FIGURES 

Number tables and figures independently and consecutively through­
out the paper. Table headings should be placed above the table and 
consist of the word "table" in upper case, the table number and a 
short caption. The caption should be in lower case with the first 
letter of each noun in upper case. Figures should be dealt with in 
a similar way, but with the heading and caption below. See Table 1 
and Figure 2 below. 

Cases (x 1000 )
 
6
 

5
 

4 

3
 

2
 

1
 Year 
1978 1979 . 1980 , 1981 1982 

FIGURE 1. History 6f 'Viru~ "A" Infection. 

Any hand work should be drawn carefully using indian ink. Where 
figures are prepared on seperate sheets they should be fixed care­
fully to the typescript in the correct plac~. Any lettering should 
use the same typeface as the text. Use only horizontal dividing 
lines in tables. Internal spacing of tables and figures is left to 
the discretion of the author. Wherever possible tables and figures 
should be designed to fit neatly between the side margins. However 
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very long tables or figures may, together with their headings, be 
set lengthwise along the page. A page may contain more than one 
figure or tab le set lengthwi se , but on no account should it contain 
any text. 

MISCELLANEOUS NOTES 

(a) footnotes. Footnotes to page one should give the address(es) 
of the author(s) and acknowledments for financial assistance. In 
other cases footnotes should be avoided. 

(b) References. The punctuation of references is given inside 
the back cover of the bulletin, to which reference'should be made. 

(c) Acknowledgments. Personal acknowledgments may be placed just 
before the Turkish Summary (~zet), as shown below. 

Acknowledgment. The author would like to thank ... 

~ZET 

Bu makale, yezim zm son sekl inin nazir leru sr ile ilgili kural lar i 
ic;ermektedir. Aym zamanda kendisi bu kuraI-lara gore hez i r landrqr 

ic;in bir ornek te~kil etmektedir. 

REFERENCES 

1.	 Board, E. Submission of manuscripts. Hacettepe Bulletin of 
Natural Sciences and Engineering, 14, Inside back cover, 1985. 
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PREPERATION OF FINAL TYPESCRIPT* 
- MATHEMATICS AND THEORETICAL STATISTICS ­

E. Board ( 1) 

This article gives instructions for preparing the final 
typescript of your paper. It is laid out according to these 
rules, and may be used as a guide. Please indent the abstract 
three spaces from the left and right margins, as shown here. 

Key words: Type styles, Layout, Spacing 

1980 Subject	 Classification: 00A20 

1. INTRODUCTION 

The rules below amplify the. information given in [1] , and aim 
at giVing the bulletin a uniform and pleasing appearance. Please 
follow them carefully. The Editorial Board are under no obligation 
to publish typescripts not conforming to these rules. Please note 
that the page numbers and publication identifier (top of page one) 
will be added during publication, but you should number the pages 
well outside the printing area, so they may be kept in order. 

2. APPROVED TYPE STYLES 

The final typescript should be prepared on an electric typewriter 
employing a black plastic ribbon and one of the following typefaces 

(a) For the	 main text:
 
IBM letter Goth 96 or OLYMPIA 808
 

(1) Hacettepe	 University, Faculty of science, Ankara, TURKEY. 

* Replaces all previous instructions. 

" i 
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(b) For the abstract, references, footnotes, subscripts and super­
scri pts: 

IBM Prestige Elite 96 or OLYMPIA 802 

12 Pitch (12 characters per inch) should be used throughout. The 
main title, subheadings and numbered section headings should be in 
upper case. Bold face type may be used to highlight newly defined 
terms, important phrases, etc. Do not use underlining. Mathematical 
symbols, foreign letters, etc., should be typed whenever possible. 
Where script letters are called for, but not available, please use 
the nearest typeable alternative (eg. upper case italic or bold­
face) • 

3. LAYOUT AND SPACING 

The typing area is 14cmx22cm, gIVIng 52 lines and 66 characters 
per l Ine at 12 pitch. Only material within this area will appear in 
print. 

The main title and subheadings should be centred. Displayed 
formulae, etc., may also be centred if desired. 

3.1. DEFINITION. Text which forms part of a numbered item (remark, 
definition, statement or proof of a theorem, etc.) will be called 
bound, all other text will be called free. 

There should be an indentation of three spaces at the beginning 
of each new paragraph. Each new block of free text should begin with 
a paragraph indentation, but bound text should not contain para­
graph indentations. However the word "proof II, and part identi f iers 
such as (a), (b), etc., should be indented three spaces. An example 
IS seen in the layout of Theorem 3.2 below • 

3.2. THEOREM. let (x ) be a convergent sequence in the Hausdorff 
n 

space X. Then: 
(a) Every subsequence of (x ) is convergent.

n 
(b) The limit of (x ) is unique.

n 
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Proof.	 (a.) Immediate from the definition. 
(b) Suppose x ~ yare lImlt s of (x ). Then if Mand N are 

n 
arbitrary neighbourhoods of x, y respectively 

The (first line of the) main title should be typed on line 8, 
the authors name(s) on line 14 and the first line of the abstract 
on li ne 17. Where there is more than one author the format for the 
names is A. Abel (1) , B. Cox (.), •... After the fi rst page the text 
should begin on line 3. The following table gives the rules for line 
spacing. 

3.3. TABLE. Line Spacing. 

Spacing	 Application 

1/2 { Subscripts, superscripts. 
1 {	 Abstract. Two lines of the same reference or footnote 

Normal text. Between two references or footnotes. 
Double-lined title or heading. 
Bet ween statement-and proof of a theorem, etc. 

2 { Between bound and free or bound and bound text. 
2 1/2 { Between a subheading and following text or item. 
3 1/2 { Between text and following subheading. 

Where subscripts, superscripts, etc., are involved the above 
spacing may be increased the minimum necessary to maintain clarity. 

3.4. EXAMPLE. Increased Spacing. 
•• x ••••••	 • •••• x ••• 

(a) a	 (b) a 
.•••••2n •• • ••• 2n 

••• 

Try to avoid case (b) by rearranging the text. Also avoid the 
use of subscripted subscripts, etc. 

4. MISCELLANEOUS NOTES 

(a) Tables, Diagrams, Graphs, etc. These should be treated as 
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numbered items. If prepared on seperate sheets they shou ld be fi xed 
to the typescript in the correct place. Any lettering should use 
the same typeface as the text. 

(b) DispIayed Formu Iae. These may be given a number on the ri ght. 
Give a two line spacing above and below. See the example below. 

4.1. EXAMPLE. Displayed Formula.
 
If A is a real square matrix then the inverse A- 1 is given by
 

A- 1	 = ~ Adj(A) .•• (4.1) 

provided IAI ~ o. 
Display the elements of a matrix between square brackets. Very 

large matrices may be typed with a finer pitch and the smaller of 
the two typefaces, if necessary. 

(c) Footnotes. Footnotes to page one should give the address(es) 
of the author(s) and acknOWledgments for financial assistance. In 
other cases footnotes should be avoided. 

(d) References. The punctuation of references is given inside 
the back cover of the bulletin, to which reference should be made. 

(e) Acknowledgments. Personal acknowledgments may be placed just 
before the Turkish Summary (Ozet). as shown below. 

AcknOWledgment. The author would like to thank 

DIET 

Bu makale, yaziru zm son sekl inin haz i r larus i i Ie ilgi l i kureIl ar i 
i~ermektedir. Aynl zamanda kendisi bu kurallara gore hazlrlandl~i 

i~in bir ornek te~kil etmektedir. 

REFERENCES 

1.	 Board, E. Submission of manuscripts. Hacettepe Bulletin of 
Natural Sciences and Engineering, l~, Inside back cover, 1985, 
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