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ÖZ E T

Tiyoredoksin redüktaz tiyoredoksinin indirgenmesini katalizleyen homodimerik bir flavoenzimdir. Enzim 
birçok organizmada karakterize edilmiş ve bakteri ve memeli olmak üzere iki sınıfta toplanmıştır. Memeli TrxR 

C-ucu aminoasit dizisinde selenosistein içerir. Sitozolde, mitokondride ve testiste olmak üzere memeli TrxR’ nin 
üç izoformu bulunur. TrxR’ nin DNA sentezi, redoks sinyali, antioksidatif savunma, selenyum metabolizması ve 
apoptozun düzenlenmesinde önemli fonksiyonları vardır. Bu nedenle birçok araştırmaya konu olmaktadır. TrxR 
iyon değiştirici ve afinite kromatografileri kullanılarak çeşitli türlerden saflaştırılmış ve karakterize edilmiştir. 
Özellikle apoptozdaki fonksiyonundan dolayı kanser araştırmaları için hedef proteindir. Bu derlemede, enzimin 
hücre içi ve dışındaki biyokimyasal fonksiyonları ve ilaç geliştirme alanındaki medikal önemi sunulmaktadır.

Anahtar Kelimeler
Tiyoredoksin redüktaz, moleküler yapı, biyokimyasal fonksiyon ve klinik önemi.

A B S T R AC T

Thioredoxin reductase (TrxR, EC 1.6.4.5) is a homodimeric flavoenzyme that catalyzed the reduction of the 
thioredoxin (Trx). It has been characterized in many bacteria and mammalian organism and categorized 

under two different types: bacterial and mammalian. Mammalian TrxRs contain an essential selenocysteine 
residue in the conserved C-terminal sequence. Mammalian TrxRs have three isoforms; cytosolic, mitochondrial 
and testis-specific. TrxR3, as testis-specific form, have different property than the other mammalian TrxRs. 
TrxR is involved in many cellular functions including DNA synthesis, redox signaling, antioxidative defence, 
selenium metabolism and regulation of apoptosis. Because of the many known functions, it is not surprising 
that this enzyme is a major subject of the many research. TrxR has been purified and characterized from a wide 
variety of species by using ion-exchange and affinity chromatographies. Notably, TrxR is a target enzyme for 
cancer drug research due to the relation with apoptosis. In this review we will present the intra- and extracellular 
biochemical functions of the enzyme and important medical applications in drug development. 
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INTRODUCTION

Thioredoxin reductase (TrxR, EC 1.6.4.5) is a wi-
dely distributed flavoenzyme that catalyzes 

the NADPH-dependent reduction of thioredo-
xin (Trx) and many other physiologically impor-
tant substrates [1,2]. TrxR plays a crucial role in 
controlling the reduced intracellular redox envi-
ronment, cellular growth, and apoptosis [3]. Subs-
trate of TrxR, thioredoxin is responsible for ma-
intaining proteins in their reduced state and also 
serves as electron donors for enzymes such as ri-
bonucleotide reductases, thioredoxin peroxida-
ses (peroxiredoxins) and methionine sulfoxide re-
ductases. It has also co-cytokine and chemokine 
activities [4]. TrxR play a pathophysiologic role 
in chronic diseases such as rheumatoid arthri-
tis, AIDS, and certain malignancies and inhibiting 
TrxR with drugs may lead to new treatments for 
human diseases [5].

TrxRs are widely expressed in many different 
tissues and cellular compartments including the 
nucleus [6,7]. Mammalian TrxRs expressed as 
three different isoforms; TrxR1 as cytosolic, TrxR2 
as mitochondrial, and TrxR3 as testis-specific 
thiol regulator [8]. TrxR belongs to a family 
of homodimeric pyridine nucleotide-disulfide 
oxidoreductases. These enzymes use at least one 
nonflavin redox center to transfer electrons from 
reduced pyridine nucleotide to their substrate 
through FAD [9]. The mammalian TrxRs have 
mechanistic and sequence identity, including 
a conserved -Cys-Val-Asn-Val-Gly-Cys- redox 
catalytic site, to glutathione reductase (GR). The 
broad substrate specificity of mammalian TrxRs 
is due to a second redox-active site, a C-terminal 

-Cys-SeCys- (where SeCys is selenocysteine), that 
is not found in GR or bacterial-type TrxR [5] The 
selenocysteine residue (Sec), which essential 
for the catalytic cycle, is located on a flexible 
C-terminal arm of the protein and thus represents 
an attractive binding site for inhibitors [8]. Notably, 
several electrophilic agents that are used in 
anticancer treatment, are inhibitors of TrxR [10]. 
TrxR has been purified and characterized from a 
wide variety of prokaryotic and eukaryotic species 
by using anion-exchange chromatography and 
affinity chromatography on 2’5’-ADP-Sepharose 
4B as well as GR [11-13]. 

Molecular Structure of Thioredoxin 
Reductase
Evolution has produced two forms of TrxR in 
nature: bacterial and mammalian. However this 
classification is not commonly used now. At 
the present time, classification of TrxR made 
according to its molecular weight; small TrxRs 
(subunit size approx. 35 kDa designated L-TrxR) 
and large TrxRs (subunit size approx. 55 kDa 
designated H-TrxR) [14-16]. Although these 
groups are members of the pyridine nucleotide 
disulfide oxidoreductases flavoproteins and they 
function as homodimers with each monomer 
possessing a FAD prosthetic group, a NADPH 
binding site and an active site comprising a redox-
active disulfide, but the amino acid sequences and 
catalytic mechanisms of the two TrxR types are 
different [1]. All three mammalian enzymes TrxR1, 
2 and 3 contain a reactive and solvent accessible 
selenocysteine residue [8]. 

Catalytic Mechanism and Substrate 
Specificity
TrxR catalyzes the reduction of the small redox 
protein thioredoxin by NADPH dependent 
mechanism, as shown below, where Tr(S2) is 
thioredoxin and Tr(SH)2 is reduced thioredoxin 
[17].

There is different catalytic mechanism between 
bacterial and mammalian TrxR as transferring 
the electrons from FAD-binding site to the protein. 
In the low Mw enzyme, after reduction of the 
disulfide by the flavin, the pyridine nucleotide 
domain must rotate with respect to the flavin 
domain. By this rotation, pyridine ring move into 
a new position as adjacent to the flavin ring and 
exposes the nascent dithiol for reaction with 
thioredoxin. In the high Mw enzyme, there is a 
third redox active group (a selenenylsulfide) that 
shuttles the reducing equivalent from the active 
site to the protein surface [1]. 

The substrate spectra of large and small TrxRs 
are different. TrxRs of higher eukaryotes have 
a wide substrate specificity that also reduces 
hydroperoxides, vitamin C or selenite, 5, 5’dithiobis-
(2-nitrobenzoate), alloxan, dehydro-ascorbate, 

NADPH + H + Tr(S2)      ⇔    NADP+ Tr(SH)2
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selenodiglutathione, ebselen, S-nitrosoglutathi-
one, alkylhydroperoxides, methylseleninate [4,18-
24]. TrxR3 can reduce glutathione disulfide in 
addition to Trx. This enzyme has therefore been 
named TGR, indicating its thioredoxin/glutathione 
reductase activity [8].

Functions of Thioredoxin Reductase
The most important function of the TrxR is 
catalyzing the NADPH-dependent reduction 
of thioredoxins. Sulfhydryl groups of Trx have 
a variety of different functions in biochemical 
mechanisms and cellular regulation that is 
capable of regenerating proteins inactivated 
by oxidative stress [24,25]. The Trx system 
functions in synthesis of deoxyribonucleotides 
for DNA synthesis by acting hydrogen donor to 
ribonucleotide reductase [3,26]. Mammalian 
TrxRs can recycle dehydroascorbate to ascorbate 
and ubiquinone to ubiquinol by NADPH-dependent 
mechanism [27,28]. TrxR from mammalian cells 
such as calf thymus, calf liver, human placenta, and 
rat liver efficiently reduced both lipoic acid and 
lipoamide [29]. Reduced form of Trx is essentially 
for the formation of the active holoenzyme T7 
DNA polymerase [30]. Trx has pleiotropic cellular 
effects, such as the control of proliferation, redox 
states and apoptosis, and is often upregulated 
in malignancy. It is able to regulate vascular 
endothelial growth factor levels and hence 
angiogenesis [31]. Trx plays an important role in 
the regulation of transcription factors and p53 
maturation and oppositely affects NF-kappa B 
and AP-1 activation [32,33]. Trx system has been 
implicated in many aspects of hormone action and 
cytokine function [34]. 

Inhibitors of Thioredoxin Reductase
Mammalian TrxR contains selenocysteine which 
is a stronger nucleophile and a highly reactive 
amino acid. The reactivity of Sec is essential 
for the native catalytic activity of mammalian 
TrxR [35]. However, the presence of Sec in 
TrxR at an easily accessible C-terminal position 
renders the enzyme highly susceptible to 
irreversible inhibition. The enzyme is inhibited 
by many clinically used electrophilic compounds; 
nitrosoureas, aurothioglucose, retinoic acid 
derivatives arsenic trioxide, motexafin gadolinium, 
nitrous compounds, flavonoids, platinum and 

gold compounds [36,37]. Most irreversible 
inhibitors of TrxR act apparently via a reaction 
with one or more redox-active residues. Most 
of curcumin analogs were more potent TrxR 
inhibitors than natural curcumin. The action was 
caused by covalent modification of the redox-
active residues Cys (497) and Sec (498) in TrxR 
[38]. The immunostimulatory dinitrohalobenzene 
compound irreversibly inhibits mammalian TrxR 
in the presence of NADPH. Inhibition of TrxR after 
reaction with dinitrohalobenzenes may play a 
major role in the inflammatory reactions provoked 
by these compounds [39]. Several quinoids such as 
diaziquone, doxorubicin, and the quinoneimine 2, 
6-dichloroindophenol, were found to be inhibitors 
of the reduction of 5, 5’-dithiobis-2-nitrobenzoic 
acid by TrxR [40]. Thiols and selenols easily form 
complexes with heavy metal ions such as Hg2+, 
Cu2+, Zn2+, Co2+, and Mn2+. It has been shown that 
divalent metal ions such as Cd2+, Ni2+, Zn2+ have 
inhibitory effect on mammalian and yeast GR 
[41]. As GR and TrxR are structurally very similar, 
divalent metal ions may also inactivate TrxR. 

Purification of Thioredoxin Reductase 
TrxRs has been purified from a variety of 
sources, from bacteria to mammalian cells, show 
great similarity both in physical and kinetic 
parameters, with different purification folds and 
yields including rat liver, calf liver and thymus, 
Fasciola hepatica, bovine adrenal cortex [42-
44]. Purification of TrxR is usually achived by 
ammonium sulphate fractionation [11], Sephadex 
G-50, DEAE-cellulose, CM-cellulose [42]. TrxRs 
and GR are belongs to the same oxidoreductase 
family. Because of this knowledge researchers 
used similar purification protocols for these 
enzymes. Both TrxR and GR have been purified 
very rapidly in high yield by employing 2′, 5′-ADP 

-Sepharose 4B as affinity columns [11-13]. The two 
reductases are then separated by hydrophobic 
chromatography and purified separately to 
homogeneity [45]. The rat liver mitochondrial 
TrxR shows a chromatographic behavior different 
from that of the cytosolic enzyme. The enzyme 
exhibits a behavior completely different from that 
of the cytosolic enzyme both on DEAE-cellulose 
and 2′, 5′-ADP Sepharose chromatography 
[46]. Mitochondrial TrxR and GR are partially 
overlapping when eluted from the DEAE-cellulose 
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column, while the cytosolic enzyme is completely 
separated from GR, which is eluted at lower salt 
concentrations [42]. 

Thioredoxin Reductase in Health and 
Disease
Expression and function of TrxR and the other 
oxidant and antioxidant enzymes are modulated by 
various pathological conditions, and therapeutic 
interventions. It has been showed that activity 
of TrxR decreased significantly in diabetic rat 
heart [47]. Glutathione and thioredoxin systems 
may participate in the cellular defense against 
oxidized LDL. Macrophage uptake of oxidized LDL 
induces a coordinated up-regulation of genes of 
these systems and this possibly modulates the 
development of atherosclerosis [48]. Redox Trx 
and TrxR activities correlated with the disease 
activity of rheumatoid arthritis patients. TrxR-
1 was up-regulated in synovial cells of these 
patients and this protein suppresses hydrogen 
peroxide and inhibits apoptosis [49,50].

Human TrxR system is associated with cancer 
cell growth and anti-apoptosis process [51]. GSH 
and Trx metabolism are studied in several malign 
and benign breast diseases, cancer cell lines 
and various cancer types. All of these studies 
emphasizes the significance of this system in 
oxidative stress and its role in cancer, disease 
occurred by oxidative stress [52-54]. Trx can 
directly inhibit proapoptotic proteins such 
as apoptosis signal-regulating kinase 1 [37]. 
Mutations in the catalytic Sec residue of TrxR 
are leading to conformational disturb p53 and 
induction of apoptosis [33]. TrxR activity increase 
in tumor cells and stimulates their proliferation as 
well the phenotype changes [2]. TrxR1 deficient 
cancer cells lose self-sufficiency of growth, 
manifest a defective progression in their S phase 
and a decreased expression of DNA polymerase 
alpha. Thus, TrxR1 is critical for self-sufficiency in 
growth signals of malignant cells and acts largely 
as a pro-cancer protein [55]. 

CONCLUSION

Understanding the relations of the thioredoxin 
system with other metabolic pathways and their 
physiological significance is important for a future 

therapeutic approach. Trx system may in fact 
already be a target for widely used electrophilic 
anticancer agents, and additional inhibitors are in 
development. Because of this reason purification, 
characterization and understanding the new 
properties and functions of this enzyme is gaining 
importance in recent years. In particular, due to 
the many known roles in carcinogenic process 
and invasive phenotype of cancer, TrxR have been 
regarded as interesting targets for chemotherapy. 
It also may play a role in the pathogenesis of a 
number of diseases and the effects of clinically 
used drugs. 

In conclusion development of new TrxR inhibitors 
is beneficial for preventing cancer, autoimmune 
diseases, and infectious diseases. The complete 
enzyme system will be major studying subject in 
future studies. 
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