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ÖZ E T

Günümüzde Bayesci yaklaşım istatistiğin kullanıldığı birçok alanda revaçta olan bir yaklaşımdır. Stokas-
tik simülasyon tekniği olan Markov Zinciri Monte Carlo  yönteminin  varlığı, karmaşık ve yüksek boyutlu 

modellerde bile Bayesci çözümlemelerin elde edilmesine  olanak sağlar. Bu  kısa derlemenin amacı, Bayesci 
yaklaşımın temel ilkeleri üzerinde durmak ve Markov Zinciri Monte Carlo yönteminin kimya verileri için nasıl 
kullanılabileceğini göstermektir. 
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A B S T R AC T

Bayesian approach is a popular topic today in many fields of study in which statistics is used. The availability 
of  stochastic simulation technique such as Markov Chain Monte Carlo makes exact Bayesian solution 

possible even in very complex and high dimensional models. The purpose of this short review paper is to 
emphasize the basic principles and to show the use of Markov Chain Monte Carlo technique for Chemistry data. 
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INTRODUCTION

Bayesian inference is the process of fitting a 
probability model to data and summarizing 

the results by a probability distribution on the 
parameters of the model and on unobserved 
quantities such as predictions for new 
observations [1]. Although Bayes’ theorem can be 
traced back to 18th century by the work of Thomas 
Bayes, the modern use of Bayes theorem began 
1950’s. Until the 1990’s, Bayesian methods found 
the little practical application because of the 
lack of computational techniques and softwares. 
Bayesian methods are now the tools of choice 
in many application areas such as Chemistry. 
Around two hundred literature from the areas 
of application, including general chemistry, 
chromatography, and mass spectrometry, 
spectroscopy, microbiology, and environmental 
chemistry are reported and reviewed by Hibbert 
and Armstrong [2].

This review is in two parts. The first is about 
the principles of Bayesian approach. The second is  
about a simulation technique called Markov Chain 
Monte Carlo, universally abbreviated MCMC. 

Principles of Bayesian Approach

Generally, statistical inference is concerned 
with making decisions from the data about the 
unknown model parameter. Bayesian inference 

is made in terms of probability distributions. The 
main difference between Bayesian and classical 
approaches comes from the definition of the 
parameter. From the Bayesian view, the unknown 
quantity is a random variable and it should be 
represented by a probability distribution during 
the estimation process. Bayesian approach 
combines two sources of information [3]. One is 
the sampling information that comes from the 
data. The other is the prior information which 
reflects your experience, knowledge and expert 
belief about the parameter before observing 
any data. In Bayesian framework, posterior 
distribution is obtained by weighting the prior 
information and sampling information through 
Bayes’ theorem. Let the prior distribution for the 
parameter θ be f(θ) and the likelihood function be 
L(θ;x). Then Bayes’ theorem synthesizes the two 
sources of information by the simple process of 
multiplying. The result is the posterior distribution, 
which is denoted by f(θ/x). Thus,

f(θ/x)αf(θ)L(θ;x)

In words, the posterior is proportional to 
prior times likelihood. Bayesian process can be 
summarized by Figure 1.

There are two important tasks in Bayesian 
approach. One is to define the functional form of 
the prior distribution which conveys your belief 
for the parameter. For that purpose, informative 

Figure 1.  Bayesian framework for statistical inference.
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and noninformative priors are available. While 
the prior information is weak, the distribution 
can be defined as a diffuse or a vague prior. Then 
the data will dominate the result. From that point, 
Bayesian approach uses more information than 
classical approach does.  Bayesian inference 
uses both objective and subjective information. 
This approach allows all evidence to be taken 
into account in an explicit way. Beside, Bayesian 
techniques are particularly well suited for 
making decision. Bayesian statistics provides 
results in a more natural and intuitive form. It is 
an advantage of Bayesian approach. It usually 
reduces the sample size and, then, the cost of 
survey. Obtaining the posterior distribution is an 
important step but not the final one. One must be 
able to extract meaningful information from this 
distribution and translate it in terms of its impact 
on the study. This is mainly concerned with 
evaluation of mean, median or mode, or interval 
summaries given by the posterior probability 
intervals. For a simple and a low dimensional 
model, this summarization can be performed 
analytically. For instance, a point estimate of θ 
is the expectation of the posterior distribution 
which can be obtained analytically by taking 
simple integral.  For detailed information about 
Bayesian framework, the reader is referred to 
O’Hagan [4], Bernardo and Smith  [5], Wright 
and Ayton [6], Tesella [7]. In most cases, however, 
the complexity of the model prevents the simple 
solution. Nowadays, there are many problems 
that fall into the category of large dimensional 
models. Determination of posterior distributions 
comes down to the evaluation of complex, 
often high dimensional integrals. In addition, 
marginal posterior summarization often involves 
computing moments or quartiles, which leads to 
more integration. Many functions, equations and 
distributions cannot be integrated analytically. 
Markov Chain Monte Carlo provides an answer 
to difficult problems of simulation from the 
highly dimensional distribution of the unknown 
parameters that appear in complex model [8,9]. 

Markov Chain Monte Carlo Methods

Markov Chain simulation is a general method 
based on drawing values of θ from approximate 
distributions. The key to Markov Chain simulation 

is to create a markov process and run the 
simulation long enough that the distribution 
of the current draws is close enough to the 
stationary distribution [1,8,9]. Gibbs sampling 
and Metropolis algorithm work well for a wide 
range of problems. However, some other hybrid 
MCMC algorithms are also used to simulate the 
posterior distributions. In this short review, a 
brief information is given only Gibbs sampling.

Gibbs sampling is a MCMC scheme where the 
transition probability is formed by the full conditional 
distributions. Assume that the distribution of interest 
is π(θ) where =(θ
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algorithm is described by the following steps [8].
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Change counter j to j+1 and return to step 2 until 
converge is reached.

This simulation strategy is used to obtain 
the values from a Markov chain. A sample from 
the ith component of  is given by θ

1i
,..., θ

ni
. Then 

point estimates of 
i
 are calculated by Monte 

Carlo integration. Once the algorithm has been 
implemented, the convergence of the generated 
chain should be checked carefully. There are several 
tests for convergence such as the Geweke test, 
Geweke z-score, Gelman-Rubin test, Raftery-Lewis 
test. For the monitoring convergence, the reader 
is referred to Gelman and Rubin [10], Brooks and 
Giudici [11].
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The availability of such a computational 
technique makes exact Bayesian inference possible 
even in very complex models. It is mentioned by 
O’Hagan [3] that generalized linear models can 
be analyzed exactly by the Bayesian method, 
whereas classical methods rely on approximations. 
As a result, numerous applications of MCMC have 
also appeared for Chemistry data and reviewed 
by Hibbert and Armstrong [2]. In parallel with 
the theoretical improvements in computational 
strategy, the software packages such as BUGS and R 
have allowed nonexperts in statistics to fit complex 
Bayesian models with minimal programming. 
Especially, WinBUGs is a powerful programme and 
can be freely downloaded from http://www.mrc-
bsu.cam.ac.uk/bugs. However it is currently not 
very user friendly programme. Given the growing 
popularity of Bayesian methods, it is likely that 
more powerful, robust and user friendly software 
will emerge in the coming years.

CONCLUSION

Bayesian approach provides more intuitive and 
meaningful inferences. Stochastic simulation 
techniques make exact Bayesian inference 
possible even in very complex models. For a high 
dimensional space, sampling is a main step for 
estimating the model parameters exactly. Thus, 
MCMC technique is a useful tool for drawing 
conclusions from the posterior distributions. A 
key issue for a successful implementation of 
MCMC is the number of iteration until the chain 
approaches to stationary. To avoid the effect 
of poor/wrong choice of initial values for the 
parameters, the first 500-1000 draws should be 
thrown out from the sample. Finally, the test of 
convergence should be applied for more reliable 
and robust estimations. 
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